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ABSTRACT 

 

Tropical cyclones (TCs) are among one the deadliest natural 

disasters which affect millions of people living in coastal areas 

around the world. In the early days, limited tools were available to 

analyze the huge meteorological data that were generated 

continuously over time. With the advent of computing power and 

artificial intelligence-based techniques, it is now possible to predict 

the origin, landfall and intensity of the tropical cyclone through 

collaborative efforts of the resources available in countries around 

the world. Real-time data analysis plays a major role. From early 

simulation models built upon the hydrological and satellite data to 

current sophisticated data-driven deep learning models are 

continuously evolving to serve the human civilization to combat 

cyclones by providing accurate early warning systems and making 

efficient disaster preparedness. This paper classifies the cyclonic 

systems into 8 categories of different intensities from the HURDAT 

2nd generation dataset. A reduction in resources wasted to figure out 

the intensity/category is attempted using machine learning 

algorithms from the state of precursor data. An accuracy of 91% is 

achieved by KNN imputing and 87% is achieved by Mean imputation 

from a dataset of 6000 samples and 22 features. 
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INTRODUCTION: 

Tropical Cyclone is one of the major consequences of climate 
change in recent years. With ever-increasing global temperatures, 
the forecasting of major weather events has become more 
unpredictable leading to major loss of lives and property. Weather 
prediction is mainly performed by two approaches - model-driven 
and data-driven. Several authors have tried to predict tropical 
cyclone formation using deep neural networks to classify or predict 
cyclonic activities from beforehand.  

However, with the ever-increasing complexity of weather data, 
models have become more expensive and leave a major carbon 
footprint on the planet hence contributing to climate change. 

Our approach in this paper is to clean the data using EDA and 
hence classify using Ensemble learners and machine learning 
models good for multi-class classification which is less compute-
heavy than neural networks. 
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RELATED WORKS: 

Wang et al. (2020) [1] stated a CNN-based tropical cyclone model that can extract 
spatial features from images taken from the Shanghai Typhoon Institute of the 
China Meteorological Administration (CMA), using automatic computation of 
features to improve detection or classification. The data augmentation method was 
used by adding Gaussian noise to every image with a mean value of 0 and a 
variance of 0.0096. Two-dimensional AlexNet is commonly used to study 
translation-invariant features of the input data. The author used a shallow network 
where kernels fetch the information on each input TCs from the pixel 
neighbourhood in the spatial Centre of the cube. ReLU activation function and 
ADAM optimizer were used along with normalized input data. The accuracy for the 
decision tree as well as TC-3DCNN was computed. For classification criteria 
between 5 to -5, the decision tree gives an accuracy of 90.2% whereas TC-3DCNN 
showed 94.9% accuracy. For, criteria between 2.5 to -2.5 accuracies of 81.5% and 
91.5% are observed for decision tree and TC- 3DCNN respectively. Similarly, for 
criteria 0, it gives 77.4% and 83% accuracies for the decision tree and TC - 3DCNN 
respectively. 

Liu et al. (2016) [2] presented the first climatic CNN model that was used in 
conjunction with Bayesian-based hyper-parameter optimization schemes on 
large meteorological datasets to find anomalies and predict extreme weather 
events. The accuracy achieved is in the range of 89-99%. Here, Tropical 
Cyclones, Atmospheric Rivers, and Weather Fronts have been considered 
events of extreme weather conditions. The Deep CNN model leverages AlexNet 
and has 4 learnable layers, including 2 convolutional layers and 2 fully connected 
layers. The model is constructed with NOEN, an open-source Python library. The 
datasets used for the experiment are CAM5.1 historical run, ERA-Interim 
reanalysis, 20-century reanalysis, and NCEP-NCAR reanalysis.  

Kar and Banerjee (2021) [3] modelled cloud intensity machine learning-based 
classification techniques for TC using feature extraction and pattern matching 
steps. Initially, the images are resized from 1024x1024 to 256x256 pixels and 
then find the region of interest (ROI) using Euclidean distance(ED) and 
Manhattan distance (MD) which former was found to be more effective. Then a 
rotation-invariant image was formed by rotating the original image by 90, 180, 
and 270 degrees and all four images were combined. (COG). The feature 
extraction involved computation of the Centre of gravity (COG), ED, normalized 
ED, variance, density, eccentricity, area of TC, the zero-order moment of TC in 
ROI, and finally the entropy. For feature extraction from 600 images Weka data 
mining tool was used. The correctly classified instances of the above-mentioned 
models in 10-fold cross-validation with 66%, 75%, and 85% splits are as follows. 
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For simple 10 - fold cross-validation the Naïve Bayes, Support Vector Machine 
(SVM), Random Tree, Logistic Model Tree and Random Forest gives accuracies 
of 36.5%, 49.8%, 72.5%, 76.6%, and 84.1% respectively. For 66-34% training-
testing split with 10-fold cross-validation accuracies reported were 39.8%, 40.1%, 
67.4%, 70.5%, and 80.1% respectively. For 75-25% training-testing split with 10-
fold cross-validation accuracies found were 36%, 46.6%, 66%, 67.3%, and 
84.6% for the same models. Finally, if 85-15% split with 10-fold cross-validation 
accuracies reported were 33.3%, 45.5%, 71.1%, 75.5% and 84.6% respectively. 
Random forest had performed the best. 

According to Vecchi and Soden (2007) [4], the correlation between tropical 
cyclones and global warming is widely debated. Authors used climate models 
and observational reconstructions to find a relationship between changes in sea 
surface temperature and tropical cyclone ‘potential intensity’—a measure that 
provides an upper bound on cyclone intensity and can also reflect the likelihood 
of cyclone development. Results indicate that although tropical Atlantic surface 
temperatures are at a record high, the Atlantic potential intensity probably 
peaked in the 1930s and 1950s, and recent values are near the historical 
average. The outcomes show that the response of tropical cyclone activity to 
natural climate variations, which usually involve localized changes in sea surface 
temperature, may be larger than the response to the more uniform patterns of 
greenhouse-gas-induced warming. 

Emanuel (2005) [5] explained that the destructive potential of a cyclone is often 
underestimated and more effort is put into predicting the path or frequency of 
cyclones. A necessary Potential Destructiveness Index (PDI) is of more concern 
as studies show there is an upward trend of it which correlates to loss of coastal 
life and property. Prediction of 8-12% rise in PDI of a cyclone, considering factors 
like tropical ocean temperature, increase in storm lifetime does not match when 
data is reconstructed using Hadley Centre Sea Surface Temperature and 
averaged reanalysis data over the same tropical areas giving rise to a 40% 
increase in PDI. A sharp increase in PDI after the 1970s indicates global 
warming along with vertical wind shear, sub-surface temperatures, and many 
other missing variables to play a part in such an unprecedented increase.  

Matsuoka et al. (2018) [6] proposed A binary classification using CNN feeding on 
2D Outgoing Longwave Radiation data classifying “developing tropical cyclones” 

from “non-developing depressions” and “precursors”. Training data from 1979 to 

1998 were equally divided into 50,000 negative (non-TCs) and positive (TCs and 
precursors) data each, generating ten deep CNNs by shuffling the data. 
Successfully predicting TCs in the western North Pacific from July to November 
with a detection probability of 79.9-89.1% also increases the False alarm ratio by 
32.8-53.4%. Accuracy of 91.2%, 77.8%, and 74.8% for precursors was achieved 
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for 2,5, and 7 days before their genesis suggesting the promise of a data-driven 
approach for analyzing tropical cyclogenesis. 

Meng et al. (2022) [7] described a method for predicting TC by directly 
forecasting the Passive Microwave Rainfall (PMR) estimation from satellite 
infrared (IR) images of TC. There are many related studies to convert IR signals 
into surface precipitation rates by statistical and machine learning techniques 
such as the Persian algorithm- which used artificial neural network (ANN) 
techniques to establish the relationship between cloud-top bright temperature 
and surface precipitation rate. Deep learning technique – which uses a slacked 
noise reduction self-encoder-based ANN to give an estimation of IR images and 
water vapour precipitation. Here TCR generative adversarial networks (GAN) 
technique is used to estimate the prediction of IR to PMR which is essentially an 
image-to-image translation. The generator predicts the PMR image with 
asymmetric structure and then uses the discriminator to determine whether the 
PMR image is similar to the IR image, or not. Well-known metrics Peak Signal-to-
Noise Ratio (PSNR), Root Mean Square Error (RMSE), Pearson Correlation 
Coefficient (CC), and Structure Similarity Index Measure (SSIM) were used to 
measure the performance of TCR-GAN. Grid-Sat and CMORPH datasets were 
used for the experiment. It was compared to the advanced models Cycle-GAN, 
Pix2Pix and Res-Pix2Pix. All the models are trained with 100 epochs using the 
Adam optimizer. For Cycle-GAN the PSNR, RMSE, CC, and SSIM were 9.781, 
7.433, 0.096, and 0.397 respectively. For Pix2Pix the values are 14.080, 6.861, 
0.596, and 0.530. With Res-pix2Pix the values are 14.376, 6.848, 0.623, and 
0542. Finally, for TCR-GAN the values are 14.480, 6.705, 0.637, and 0.550 
making it the best model among these four.  

Srinivas et al. (2013) [8] proposed a mesoscale model Advanced Research 
Weather (ARW) which amalgamated compressible non-hydrostatic equations 
and terrain conditions. The outer part of two-way interactive nested domains 
covers a larger area of 27km and the inner part has a 9km resolution with the 
minimum grid. The terrain data is collected from the US Geological Survey 
Topography. To predict TCs planetary boundary layer (PBL), surface fluxes, 
cumulus convection (CC), and cloud microphysics (CMP) for conversion 
schemes, vertical fluxes as updraft and downdraft outside the cloud as per the 
Grell scheme were used. The KF scheme follows a Lagrangian method with 
moist updraft and downdraft. Other schemes like CMP and WSM3 use the 
prognostic equation for these purposes. Here, for all the cyclones CSLP is much 
errorless as compared to the KF scheme. The time variation of MSW shows the 
higher winds with KF and GDE schemes. Updraft, downdraft, and shallow 
convection are related to increasing the performance of KF. LIN microphysics is 
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preferred with the combination of KF to reduce the track errors and achieve the 
same intensity as WSM6 and better than WSM3. 

Lian and Dong (2020)[9] experimentally fused a data preprocessing layer, an AE 
(Auto Encoder) layer, and a GRU (Gated Recurrent Unit) layer with a customized 
batch process to train a model on Western North Pacific (WNP) Ocean Best 
Track Data from 1945-2017 provided by the Joint Typhoon Warning Center 
(JTWC). The dataset was randomly split into 9:1 ratio for training and testing 
respectively, within which the training set was further split into 7:3 ratio for testing 
and validation resulting in 54,981 tropical cyclone records for training, and 6108 
records for testing. It outperformed the Numerical Weather Prediction (NWP) 
model by about 15%, 42%, and 56% in 24, 48, and 72-hour forecasts, and 27%, 
13%, 17%, and 17% better than RNN, AE-RNN, GRU, and LSTM, respectively, 
in 24-hour forecasts. 

Chen et al.[10] used semi-supervised model with SVM, Back Propagation Neural 
Network (BPNN) and CNN's including LeNet, GoogLeNet, and ResNet etc. using 
feature extraction, semi-supervised CNN and training set update. 2 years data of 
from the FY-4 meteorological satellite was collected and preprocessed using 
cropping, and augmentation. Data used were 5243 sets of MSIs/cyclones with 14 
bands with a resolution of 4000 m. PCA features were extracted and fed to the 
proposed semi-supervised CNN with many unlabeled samples. First CNN maps 
the features and generates feature - label pair, followed by the second CNN fine-
tuned by feature - label pair of CNN1 and remaining samples are added to CNN2 
to predict the Labels. SGD used for optimization, Histogram distance and 
Euclidean distance were combined and he training set is updated. With only 5% 
of labeled samples the accuracy for SVM, BPNN, MLR, k-NN, CNN and 
proposed method were 67.13%, 69.48%, 63.49%, 50.08%, 64.62%, and 77.05% 
respectively. Experimental results reported for 10%,15%,20%,25% and 30% 
labelled sample the accuracy 88.92%,94.68%,94.56%,95.59% and 96.69% 
respectively which is superior with respect other models mentioned earlier. 

 

 

COMPARISON OF TECHNIQUES 

In this section we discuss the methods based on their model architecture, 
dataset used for the experiments, features used to model input, pre-trained 
models used, the different training parameters used and finally their 
performances metrics. The details are given in Table-1. 
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 Architecture    Dataset used     Feature extraction   Pre-trained   Training    Accuracy  and 

                         model used   parameter    other measures 
                                  

[1] 3D-CNN    European Center for  Weighted    Regression,   TC-   Epochs 50,    83.0%  when 
      Medium-Range  combination of   3DCNN      Adam Optimizer intensity Δ>0  
      Weather  Forecasts  every input.                     
      (ECMWF)                                   
                                 

[2] AlexNet with 2 CNN  CAN  5.1 Historical  NA        AlexNet with   VBOT, UBOT, 89-99% accuracy 
 layers, Max pooling  Run, ERA-INT               custom layers   T200, TMQ, V850,     
 later and NOEN  RIM  Reanalysis,  20                   U850        
 library     Century  Reanalysis,                   Atmospheric river -     
      NCEP-NCAR                      TNQ,  LAND  SEA     
      Reanalysis                         MASK        

                                 
[3] Cloud  intensity  Meteosat-8  and  COG,  Euclidean   Naive Bayes,   NA    86.66%   

 classification    Meteosat-7  data  of  Distance (ED)    SVM, Random             
                                       

 techniques    the US    naval   Mean ED       Tree, Logistic             
                                        

      Research        Find   variance,   Model Tree,             
                                          

      Laboratory.       density,     DC,   Random Forest               
                                         

               entropy                          
                                 
                                          

[4] Climate models and  Reanalysis data from   NA         NA       NA      Local sea surface 
 observational    ERA-5                                temperature change 
 reconstructions                                   has more impact on 
                                      TC    
                            
                                          

[5] Numerical Simulation  Daily   averaged   Sea    Surface   Numerical model    NA      40% increase in 
                                

      Reanalysis  data  and   Temperature, wind                place of  expected 
                                 

      Hadley Center SST   shear, subsurface                10% PDI   
                                     

      data         temperature                      

                          
                                          

[6] 2D deep CNN   30 years  data   Deep convective   NA       Adamoptimizer,  91% (2 days prior), 
                           

 (4 convolutional  produced by NICAM   circulation            Batch     77.8% (5 days 
                                 

 layers, 3 pooling  with 14  km                    Normalization  prior),74.8% (7 days 
                                 

 layers, and 3 fully  horizontal resolution                    100000 data Epoch:  prior)    
                                      

 connected layers)                             19-46         
                   
                                          

[7] TCR-GAN,  (PMR  to  4579 pairs of images   Random   cropping,   UNet, Pix2Pix,   100  epochs, Adam  PSNR=14.480,  
 IR mapping)    from    Tropical  Horizontal    Res-Pix2Pix   optimizer,    RMSE=6.705,  
      Cyclone   IR to  mirroring           momentum    CC=0.637, AND 
      Rainfall Prediction                   beta1=0.5    SSIM=0.550   
      (TCIRRP)                                   
                               

[8] ARW version 3.2  From IMD reports  NA        NA      NA    About 67% of the 
 Mesoscale model   and Tropical Rainfall                         cyclones  are 
      Measuring   Mission                         simulated  with 
      (TRMM)   satellite                         mean errors.   
      rainfall datasets                             
                          

[9] AutoEncoder  with  Western    North  ANN generated          LR=0.001,    27%,13%, 17%, and 
 GRU     Pacific    (WNP)            NA      batch=64,loss=MSE 17% better  than 
      Ocean Best Track                         RNN, AE-RNN, 
      Data from  1945-                         GRU, and LSTM 
      2017                                    
               

[10] Semi supervised deep  FY-4 meteorological  Cropping, Data   LeNet, ResNet,   SGD optimizer 77.05 - 95.59% for 
 network    satellite data      augmentation    GoogleNet         5-30% split   
                                          

Table-1: Comparative study of the methods on classification of tropical cyclone 
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PROJECT OBJECTIVE: 

This project truncates 26000 samples to roughly 6000 samples to 
remove maximum missing values. Afterwards, we perform various 
data augmentation techniques and then machine learning 
algorithms to multiclassify tropical cyclones from subtropical 
cyclones and regular depressions. 

Building a classifier using machine learning can be a difficult job if 
the dataset used is not in its best format or if it has a considerable 
amount of missing values or if it is not correctly interpreted. 
Therefore a considerable portion of this work will be spent on 
EDA(Exploratory Data Analysis) to fine-tune the dataset. Analysing 
data from HURDAT2 (HURricane DATa 2nd generation) - is based 
upon the “best tracks” available from the b-decks in the Automated 
Tropical Cyclone Forecast (ATCF – Sampson and Schrader 2000) 
system database and is described below. Reasons for the revised 
version include: 

1) inclusion of non-synaptic (other than 00, 06, 12, and 18Z) best 
track times (mainly to indicate landfalls and intensity maxima) 

2) inclusion of non-developing tropical depressions; and  

3) inclusion of best track wind radii. 

 

PROJECT SCOPE: 

This project assumes that the dataset collected is representative of 
all types of TC formations around the world. 

The scope of this project is confined only to classifying multiple 
types of cyclonic activity over the Pacific based on previously 
formed cyclones. This paper will not contain any precise 
conclusion. 
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DATASET : 

We have used the HURDAT2 dataset provided by the National 
Hurricane Center (NHC) and the Central Pacific Hurricane Center 
(CPHC).(NHC’s area extends from the North and Central America 

west coast westward to 140 degree W and CPHC’s area extends 

from 140 to 180 degree W. 

TD – Tropical cyclone of tropical depression intensity (< 34 knots) 

TS – Tropical cyclone of tropical storm intensity (34-63 knots) 

HU – Tropical cyclone of hurricane intensity (> 64 knots) 

EX – Extratropical cyclone (of any intensity) 

SD – Subtropical cyclone of subtropical depression intensity (< 34 
knots) 

SS – Subtropical cyclone of subtropical storm intensity (> 34 knots) 

LO – A low that is neither a tropical cyclone, a subtropical cyclone, 
nor an extratropical cyclone (of any intensity) 

DB – Disturbance (of any intensity) 

Original dataset without truncating. 
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Pacific dataset  after  truncating. 

 

 

Atlantic dataset  after  truncating. 
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EXPLORATORY DATA ANALYSIS (EDA): 

The target feature is Status. Here, we classified the cyclone based 
on feature shown below:-   

 

 

[DATA TRANSFORMATION] 

For missing value treatment we have used KNN imputation and 
MEAN imputation and to transform the categorical data to 
numerical data we have used label encoder. 
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Top ten cyclones which occurred the maximum number of times: 

 

 

Frequency of Hurricanes by month: 

 

 

Yearwise frequency of hurricanes: 
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Frequency of cyclones by category: 

 

 

 

[FEATURE EXTRACTION] 

For feature extraction we have done Random Forest Classifier to 
extract the important features. Here we, consider top 5 feature to 
train our models. 
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We rectify the skewness of the first 5 features applying log, sqrt and 
cbrt functions. 

 

Correcting skewness for ‘Latitude’. 

 

 

Correcting skewness for ‘Maximum Wind’.  
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Correcting skewness for ‘Longitude’.  

 

Correcting skewness for ‘Minimum Pressure’.  

  

 

Correcting skewness for ‘High Wind NE’.  
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PROPOSED METHOD :  

After performing EDA, we impute the missing values once with mean and then 
with KNN and run the following algorithms on each type. 

1. Decision Tree 
2. Random Forest 
3. Naive Bayes 
4. SVM 
5. KNN Classification 

 

 

 

RESULTS AND ANALYSIS :  

 

[FOR KNN Imputation( With Top 5 features)] 

 

Decision Tree 

Accuracy score for Decision Tree is : 0.8899895724713243 

Recall score for Decision Tree is : 0.8899895724713243 

Precision score for Decision Tree is : 0.880835452330819 

 

Random Forest 

Accuracy:  0.9251184834123223 

Recall:  0.9251184834123223 
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Precision:  0.9247560381579104 

 

Naive Bayes Algorithm. 

Accuracy (Naive Bayes): 0.9251184834123222 

Recall (Naive Bayes): 0.9251184834123222 

Precision (Naive Bayes) : 0.9247560381579105 

 

Support Vector Algorithm. 

Accuracy  0.7979987492182614  

Recall:  0.7979987492182614  

Precision:  0.8516947339916375 

 

KNN Classification  

Accuracy : 0.9161137440758293 

Recall : 0.9161137440758293 

Precision :0.9135160676490003 

 

 

[ For MEAN Imputation(with top 5 features) ] 

 

Decision Tree  

Accuracy score  : 0.9036455888106415 

Recall score : 0.9036455888106415 

Precision score: 0.896496038573900 
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Random Forest : 

Accuracy: 0.8744075829383886 

Recall: 0.8744075829383886 

Precision: 0.8733078500159847 

 

Naive Bayes Algorithm  

Accuracy (Naive Bayes): 0.6596302816901407 

Recall (Naive Bayes): 0.6596302816901407 

Precision (Naive Bayes) : 0.6087871417773254 

 

Support Vector Algorithm 

Accuracy 0.6541588492808005 

Recall: 0.6541588492808005 

Precision: 0.6111898281406157 

 

KNN Classification (Top 5 features) 

Accuracy : 87.44075829383885 

Recall : 87.44075829383885 

Precision : 87.33078500159847 

 
For KNN Imputation we the highest accuracy for random 
forest model of 92.5%. 

 

For Mean Imputation we the highest accuracy for random 
forest model of 98.3%. 
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CODE :  

 

from google.colab import files 

uploaded = files.upload() 

 

# Import pandas. 

import pandas as pd 

# Import numpy. 

import numpy as np 

# Import matplotlib. 

import matplotlib.pyplot as plt 

# Import seaborn. 

import seaborn as sns 

# Import regular expression. 

import re 

# import datetime. 

import datetime as dt 

 

# Import the data. 

df = pd.read_csv('Pacific_tranc.csv') 
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# Convert date column as datetime. 

df['Date'] = pd.to_datetime(df['Date'] , format= '%Y%m%d') 

 

# I want to create columns Latitude Hemisphere and Longitude 
Hemisphere with code 0 = N , 1 = S & 0 = E , 1 = W. 

def hemisphere(coord): 

        hem = re.findall(r'[NSWE]' , coord)[0] 

        if hem == 'N' or hem == 'E': 

            return 0 

        else: 

            return 1 

 

# Creating the column Latitude_Hemisphere.     

df['Latitude_Hemisphere'] = df['Latitude'].apply(hemisphere) 

df['Longitude_Hemisphere'] = df['Longitude'].apply(hemisphere) 

df['Latitude_Hemisphere'] = 
df['Latitude_Hemisphere'].astype('category') 

df['Longitude_Hemisphere'] = 
df['Longitude_Hemisphere'].astype('category') 

 

# Convert the latitude and longitude Column to numeric type. 

df['Latitude'] =  df['Latitude'].apply(lambda x: re.match('[0-9]{1,3}.[0-
9]{0,1}' , x)[0]) 
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df['Longitude'] =   df['Longitude'].apply(lambda x: re.match('[0-
9]{1,3}.[0-9]{0,1}' , x)[0]) 

 

 

 

df.head(10 

        ) 

 

 

df =  df[['ID', 'Name', 'Date', 'Time', 'Event', 'Status', 'Latitude', 
'Latitude_Hemisphere' ,  

       'Longitude', 'Longitude_Hemisphere' ,'Maximum Wind', 
'Minimum Pressure', 'Low Wind NE', 

       'Low Wind SE', 'Low Wind SW', 'Low Wind NW', 'Moderate 
Wind NE', 

       'Moderate Wind SE', 'Moderate Wind SW', 'Moderate Wind 
NW', 

       'High Wind NE', 'High Wind SE', 'High Wind SW', 'High Wind 
NW']] 

 

# Change all time to format HHMM. 

df['Time'] = df['Time'].astype('object') 

def hhmm(time): 

    time = str(time) 
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    digits = re.findall(r'\d', time) 

    t = '' 

    if len(digits) == 1: 

        t ='0{i}00'.format(i =time) 

    elif len(digits) == 2: 

        t = '{i}00'.format(i =time) 

    elif len(digits) == 3: 

        t = '0{i}'.format(i =time) 

    else: 

        t = time 

    return t 

# Apply the function. 

df['Time'] = df['Time'].apply(hhmm) 

 

# Convert the column into Datetime. 

df['Time'] = pd.to_datetime(df['Time'] , format='%H%M').dt.time 

 

 

# Convert the status column to categorical. 

df['Status'] = df['Status'].astype('category') 

 

data = df.drop(columns = ['ID' , 'Event']) 
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# The missing values are given by -999. So , we need to fill them 
appropriately. 

 

# Show the count of missing values and fill them with mean. 

for column in df.columns: 

    missing_cnt = df[column][df[column] == -999].count() 

    print('Missing Values in column {col} = '.format(col = column) , 
missing_cnt ) 

    if missing_cnt!= 0: 

        mean = round(df[column][df[column] != -999 ].mean()) 

        index = df.loc[df[column] == -999 , column].index 

        df.loc[df[column] == -999 , column] = mean 

         

 

 

data.Status.unique() 

data.columns 

col=[] 

for column in data.columns: 

    missing_cnt = data[column][data[column] == -999].count() 

    if missing_cnt >0: 

      col.append(column) 



, 

28 

    print('Missing Values in column {col} = '.format(col = column) , 
missing_cnt ) 

     

 

 

uniqueColumn=data.Status.unique() 

 

slicedata=data.loc[:,"Status":] 

slicedata 

 

 

from sklearn import preprocessing  

  

# label_encoder object knows how to understand word labels. 

label_encoder = preprocessing.LabelEncoder() 

slicedata.head()  

# Encode labels in column 'Status'. 

# 

slicedata['Status']= label_encoder.fit_transform(slicedata['Status']) 

 

slicedata.to_csv('FillupByKNN.csv',index=False)   

slicedata.astype('float') 
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for column in slicedata.columns: 

  print(column,type(column)) 

 

 

# The missing values are given by -999. So , we need to fill them 
appropriately. 

from sklearn.model_selection import train_test_split 

from sklearn.impute import KNNImputer 

from sklearn.utils import shuffle 

 

#Using KNN imputatuion, we will fill the data 

newdf={} 

uniqueColumn=slicedata.Status.unique() 

#Replacing -999 to nan 

for i in slicedata.columns: 

  for j in range(slicedata.shape[0]): 

    if slicedata.loc[j,i] == -999: 

      print(i,j,'True') 

      slicedata.loc[j,i]=np.nan 

 

data.to_csv('FillupByMean.csv',index=False) 

for cyclonetype in uniqueColumn: 
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  newdf[cyclonetype]=pd.DataFrame(slicedata.loc[slicedata['Status'] 
== cyclonetype]) 

   

knn=KNNImputer(n_neighbors=10) 

for cyclonetype in uniqueColumn: 

  knn.fit(newdf[cyclonetype]) 

  
newdf[cyclonetype]=pd.DataFrame(knn.transform(newdf[cyclonetyp
e]),columns=newdf[cyclonetype].columns) 

frames=[newdf[0],newdf[1],newdf[2],newdf[3],newdf[4],newdf[5],ne
wdf[6],newdf[7],newdf[8],newdf[9],newdf[10]] 

newdata=pd.concat(frames) 

newdata=shuffle(newdata) 

newdata.to_csv('Fillupdata.csv',index=False) 

newdf[0]   

 

 

 

sns.distplot(df['Maximum Wind'],hist=True,color='red') 

 

newdata['RMaxWind']=np.log(newdata['Maximum Wind']) 

sns.distplot(newdata['RMaxWind'],hist=True,color='green') 
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sns.distplot(df['Longitude'],hist=True,color='red')         

 

newdata['RLong']=np.cbrt(newdata['Longitude']) 

sns.distplot(newdata['RLong'],hist=True,color='green') 

 

sns.distplot(df['Latitude'],hist=True,color='red')         

 

newdata['RLat']=np.sqrt(newdata['Latitude']) 

sns.distplot(newdata['RLat'],hist=True,color='green') 

 

 

sns.distplot(df['Minimum Pressure'],hist=True,color='red')  

 

newdata['RMinPressure']=np.sqrt(newdata['Minimum Pressure']) 

sns.distplot(newdata['RMinPressure'],hist=True,color='green') 

 

sns.distplot(newdata['High Wind NE'],hist=True,color='red')  

 

 

 

newdata['RHighWindNE']=np.cbrt(newdata['High Wind NE']) 

sns.distplot(newdata['RHighWindNE'],hist=True,color='green') 
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sns.distplot(newdata['Low Wind NE'],hist=True,color='red') 

 

newdata['LWNE']=np.cbrt(newdata['Low Wind NE']) 

sns.distplot(newdata['LWNE'],hist=True,color='green') 

 

sns.distplot(newdata['Low Wind SE'],hist=True,color='red') 

 

newdata['LWSE']=np.cbrt(newdata['Low Wind SE']) 

sns.distplot(newdata['LWSE'],hist=True,color='green') 

 

sns.distplot(newdata['Low Wind SW'],hist=True,color='red') 

 

newdata['LWSW']=np.cbrt(newdata['Low Wind SW']) 

sns.distplot(newdata['LWSW'],hist=True,color='green') 

 

sns.distplot(newdata['Low Wind NW'],hist=True,color='red') 

 

newdata['LWNW']=np.cbrt(newdata['Low Wind NW']) 

sns.distplot(newdata['LWNW'],hist=True,color='green') 

 

sns.distplot(newdata['Moderate Wind NE'],hist=True,color='red') 
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newdata['LWNW']=np.cbrt(newdata['Low Wind NW']) 

sns.distplot(newdata['LWNW'],hist=True,color='green') 

 

 

 

Low Wind SW <class 'str'> 

Low Wind NW <class 'str'> 

Moderate Wind NE <class 'str'> 

Moderate Wind SE <class 'str'> 

Moderate Wind SW <class 'str'> 

Moderate Wind NW <class 'str'> 

High Wind NE <class 'str'> 

High Wind SE <class 'str'> 

High Wind SW <class 'str'> 

High Wind NW <class 'str'> 

 

## Statististical Analysis of the data. 

 

## Top ten cyclones which occured the maximum number of times. 
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# Find the top ten cyclones which have occured the maximum 
number of times. 

lst = [x.strip() for x in data.groupby('Name').count().sort_values(by = 
'Date' , ascending = False).index[:10]] 

val = data.groupby('Name').count().sort_values(by = 'Date' , 
ascending = False)[:10]['Date'].values 

font = {'family' : 'monospace', 

        'weight' : 'bold', 

        'size'   : 22} 

plt.rc('font', **font) 

fig , ax = plt.subplots() 

fig.set_size_inches(12,12) 

ax.pie(  labels = lst , x = val , autopct='%.1f%%' , explode = [0.1 for 
x in range(10)]) 

plt.title(' Top Ten Hurricanes by Frequency.' , fontsize = 30) 

plt.show() 

 

## Frequency of Hurricanes by Month. 

 

data['Month'] = data['Date'].apply(lambda x: x.month) 

data['Year'] = data['Date'].apply(lambda x: x.year) 

mnt = ['Jan' , 'Feb' , 'Mar' , 'Apr' , 'May' , 'June' , 'July' , 'Aug' , 
'Sep','Oct' , 'Nov' , 'Dec'] 

temp = data.groupby('Month').count() 
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temp.loc[4] = 0 

temp = temp.sort_values(by = 'Month' , ascending = False) 

font = {'family' : 'monospace', 

        'weight' : 'bold', 

        'size'   : 22} 

plt.rc('font', **font) 

plt.figure(figsize = (10,10)) 

sns.set_style("whitegrid") 

ax = sns.barplot(x = temp.index , y = 'Date' , data=temp , palette = 
'RdBu' ) 

plt.xticks([0,1,2,3,4,5,6,7,8,9,10,11] , mnt , rotation = 90) 

plt.ylabel('Frequency') 

plt.title('Frequency of Cyclones by Month.') 

 

 

# Year-Wise Frequency of Hurricanes. 

temp = data.groupby('Year').count().sort_values(by = 'Month' , 
ascending = False) 

plt.figure(figsize= (12,12)) 

sns.lineplot(x = temp.index , y = 'Month' , data = temp , label = 
'Frequency') 

plt.ylabel('Frequency') 

plt.title('Year Wise Frequency of Hurricanes.') 
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plt.show() 

 

# Probability Distribution Function of Frequency. 

temp = data.groupby('Year').count().sort_values(by = 'Date' , 
ascending = False) 

plt.figure(figsize=(15,15)) 

sns.distplot(temp['Date'].values , norm_hist = True , axlabel = 
'Probability Distribution of Frequency of Cyclones.') 

 

## Frequency of Cyclones by category. 

 

## Frequency of Cyclones by Category 

# TD – Tropical cyclone of tropical depression intensity (< 34 knots) 

# TS – Tropical cyclone of tropical storm intensity (34-63 knots) 

# HU – Tropical cyclone of hurricane intensity (> 64 knots) 

# EX – Extratropical cyclone (of any intensity) 

# SD – Subtropical cyclone of subtropical depression intensity (< 34 
knots) 

# SS – Subtropical cyclone of subtropical storm intensity (> 34 
knots) 

# LO – A low that is neither a tropical cyclone, a subtropical 
cyclone, nor an extratropical cyclone (of any intensity) 

# WV – Tropical Wave (of any intensity) 

# DB – Disturbance (of any intensity) 
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temp = data.groupby('Status').count().sort_values(by = 'Date' , 
ascending = False) 

fig , ax = plt.subplots() 

fig.set_size_inches(12,12) 

sns.barplot(y = list(temp.index) , x = 'Date' , data = temp, palette= 
'pastel' ) 

plt.xlabel('Frequency') 

plt.ylabel('Catehory') 

plt.title('Category wise Frequency Distribution of Cyclones.') 

plt.show() 

 

 

 # Classification model.  

 

# Display the data. 

#newdata=pd.read_csv('newdf.csv') 

newdata.head(10) 

 

 

## 1. Decision Tree. 

 

# Import Decision Tree Classifier. 

from sklearn.tree import DecisionTreeClassifier 
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# Import train-test split. 

from sklearn.model_selection import train_test_split 

 

# Import accuracy Score. 

from sklearn.metrics import accuracy_score 

 

#Import Recall Score. 

from sklearn.metrics import recall_score  

 

#Import Precision Score. 

from sklearn.metrics import precision_score  

 

# Form the model. 

dt = DecisionTreeClassifier(min_samples_leaf=50 , 
criterion='entropy') 

 

 

# Set the dependent and independent variables. 

x_train = newdata[['Latitude', 'Latitude_Hemisphere', 

       'Longitude', 'Longitude_Hemisphere', 'Maximum Wind', 
'Minimum Pressure', 
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       'Low Wind NE', 'Low Wind SE', 'Low Wind SW', 'Low Wind 
NW', 

       'Moderate Wind NE', 'Moderate Wind SE', 'Moderate Wind SW', 

       'Moderate Wind NW', 'High Wind NE', 'High Wind SE', 'High 
Wind SW', 

       'High Wind NW']] 

y_train = newdata['Status'] 

 

 

# Perform the Kfold validation. 

 

# Import the KFold library. 

from sklearn.model_selection import KFold 

kf = KFold(n_splits=10 , shuffle= True , random_state=42 ) 

 

dt_scores = [] 

dt_recall_scores = [] 

dt_precision_scores = [] 

xtr,xts,ytr,yts=train_test_split(x_train,y_train,test_size=0.3,random_
state=4) 

dt.fit(xts, yts) 

y_pred = dt.predict(xts)  

dt_scores.append(accuracy_score(yts, y_pred))  
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dt_recall_scores.append(recall_score(yts , y_pred , average = 
'weighted')) 

dt_precision_scores.append(precision_score(yts , y_pred , average 
= 'weighted')) 

 

dt_scr = {'accuracy' : np.mean(dt_scores) , 'recall': 
np.mean(dt_recall_scores) , 'precision' :  
np.mean(dt_precision_scores) } 

print('Accuracy score for Decision Tree is :' , dt_scr['accuracy']) 

print('Recall score for Decision Tree is :' , dt_scr['recall']) 

print('Precision score for Decision Tree is :' , dt_scr['precision']) 

 

 

 

newdata.head() 

 

## 2. Random Forest. 

 

# Import Random Forest 

from sklearn.ensemble import RandomForestClassifier 

 

# First I want to determine the important features. 

rf = RandomForestClassifier(oob_score=True , n_estimators=1000) 
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rf.fit(x_train , y_train) 

features = pd.Series(rf.feature_importances_ , index= 
x_train.columns).sort_values(ascending=False) 

features 

 

## Creating a decision tree for top ten most important features. 

 

# Top ten most important features. 

features.index[:5] 

 

 

# Set the dependent and independent variables. 

x_trainf = newdata[features.index[:5]] 

y_train = newdata['Status'] 

 

# Perform the Kfold validation. 

 

# Import the KFold library. 

from sklearn.model_selection import KFold 

kf = KFold(n_splits=10 , shuffle= True , random_state=42 ) 

 

dt_scores = [] 
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dt_recall_scores = [] 

dt_precision_scores = [] 

xtr,xts,ytr,yts=train_test_split(x_trainf,y_train,test_size=0.3,random_
state=4) 

dt.fit(xtr , ytr) 

y_pred = dt.predict(xts)  

dt_scores.append(accuracy_score(yts, y_pred))  

dt_recall_scores.append(recall_score(yts , y_pred , average = 
'weighted')) 

dt_precision_scores.append(precision_score(yts , y_pred , average 
= 'weighted')) 

dt_scr5 = {'accuracy' : np.mean(dt_scores) , 'recall': 
np.mean(dt_recall_scores) , 'precision' :  
np.mean(dt_precision_scores) } 

print('Accuracy score for Decision Tree is :' , dt_scr['accuracy']) 

print('Recall score for Decision Tree is :' , dt_scr['recall']) 

print('Precision score for Decision Tree is :' , dt_scr['precision']) 

 

import numpy as np 

 

from keras.models import Sequential 

from keras.layers import Dense 

from keras.layers import LSTM 
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x_train,x_test,y_train,y_test=train_test_split(x_trainf,y_train,test_siz
e=0.4,random_state=4) 

model = Sequential()   

 

 

## As we can see the Top five features('Maximum Wind', 'Minimum 
Pressure', 'Latitude', 'Year', 'Longitude') give the same accuracy as 
when we get choosing all the features. 

 

## 2 . Random Forest 

 

# Here instead of cross validation we will be using oob score as a 
measure of accuracy. 

# I will hyper tuning the parameter: No of Trees. 

 

trees  = [10, 20 , 50, 100,200,500,1000,1200] 

maxn_five = {} 

maxn = {} 

for i in trees: 

    rf = RandomForestClassifier(n_estimators=i , oob_score=True) 

    rf.fit(x_train, y_train) 

    print('Obb Score for {x} trees: and taking top five features 
'.format(x = i) , rf.oob_score_) 
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    maxn_five[i] = rf.oob_score_ 

    rf.fit(x_train , y_train) 

    print('Obb Score for {x} trees: and taking all the features 
'.format(x = i) , rf.oob_score_) 

    maxn[i] = rf.oob_score_ 

 

# Split the data into training and testing. 

x_trainf = newdata[features.index[:5]] 

x_train = newdata[features.index[:18]] 

y_train = newdata['Status'] 

x_trains , x_tests , y_trains, y_tests  = train_test_split(x_trainf, 
y_train, test_size=0.33, random_state=42) 

# Set n to the feature of maximum oob score. 

n = 0 

for i in maxn_five: 

    if max(maxn_five.values()) == maxn_five[i]: 

        n= i 

# Set n_estimators to n. 

rf = RandomForestClassifier(oob_score=True , n_estimators=n) 

rf.fit(x_trains , y_trains) 

y_pred_rf = rf.predict(x_tests[features.index[:5]]) 
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scores_rf = {'accuracy': accuracy_score(y_tests , y_pred_rf) ,'recall' 
: recall_score(y_tests , y_pred_rf , average='weighted') ,'precision' : 
precision_score(y_tests , y_pred_rf , average='weighted') } 

print('Scores for Random Forest with n = ' , n , ' and using features 
',  features.index[:5] , ' are : ') 

print('Accuracy: ' , scores_rf['accuracy']) 

print('Recall: ' , scores_rf['recall']) 

print('Precision: ' , scores_rf['precision']) 

 

# n_All = 0 

# for i in maxn: 

#     if max(maxn.values()) == maxn[i]: 

#         n_All= i 

# # Set n_estimators to n. 

# rf = RandomForestClassifier(oob_score=True , 
n_estimators=n_All) 

# rf.fit(x_train , y_train) 

# y_pred_rf_all = rf.predict(x_test) 

# scores_rf_all = {'accuracy': accuracy_score(y_test , y_pred_rf) 
,'recall' : recall_score(y_test , y_pred_rf , average='weighted') 
,'precision' : precision_score(y_test , y_pred_rf , 
average='weighted') } 

# print('Scores for Random Forest with n = ' , n_All , ' and using all 
features ' , ' are : ') 

# print('Accuracy: ' , scores_rf_all['accuracy']) 
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# print('Recall: ' , scores_rf_all['recall']) 

# print('Precision: ' , scores_rf_all['precision']) 

 

 

## 3. Naive Bayes Algorithm. 

 

from sklearn.naive_bayes import GaussianNB 

from sklearn.metrics import confusion_matrix 

from sklearn.metrics import f1_score 

from sklearn.metrics import accuracy_score 

from sklearn.metrics import recall_score 

from sklearn.metrics import precision_score 

x_trains,x_tests,y_trains,y_tests=train_test_split(x_trainf,y_train,test
_size=0.25,random_state=4) 

model = GaussianNB() 

model.fit(x_trains, y_trains) 

 

# Predict Output  

pred = model.predict(x_tests) 

 

# Plot Confusion Matrix 

res = confusion_matrix(pred,y_tests) 
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names = np.unique(pred) 

print("Accuracy (Naive Bayes):",scores_rf['accuracy']*100) 

print("Recall (Naive Bayes):",scores_rf['recall']*100) 

print("Precision (Naive Bayes) :",scores_rf['precision']*100) 

 

### We can see that the overall score with top five features is 
significantly greater than the overall score with all the features. 
Hence , we can see that feature selection is very important for 
Naive Bayes. 

 

## 4. Support Vector Algorithm. 

 

# Import SVM. 

from sklearn.naive_bayes import GaussianNB 

from sklearn import svm 

mdl5 = svm.SVC() 

nb5 = GaussianNB() 

acc_s_5 = []  

rcl_s_5 = []  

ps_scr_5 = [] 

 

# Split the data into train and test. 
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xtr5, xts5 , ytr , yts = train_test_split(x_trainf, y_train , test_size = 
0.25 , random_state = 42) 

 

# Train the model. 

mdl5.fit(xtr5 , ytr) 

y_mdl5_pred = model.predict(xts5) 

acc_s_5.append(accuracy_score(yts , y_mdl5_pred)) 

rcl_s_5.append(recall_score(yts , y_mdl5_pred , average = 
'weighted')) 

ps_scr_5.append(precision_score(yts , y_mdl5_pred , average = 
'weighted')) 

 

# for tr, ts in kf.split(x_train): 

#     ytr = y_train.loc[tr] 

#     yts = y_train.loc[ts] 

#     xtr5 = x_trainf.loc[tr] 

#     xts5 = x_trainf.loc[ts] 

 

# #   Accuracy , Precision and recall with top five features. 

#     mdl5.fit(xtr5 , ytr) 

#     y_mdl5_pred = nb5.predict(xts5) 

#     acc_s_5.append(accuracy_score(yts , y_mdl5_pred)) 
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#     rcl_s_5.append(recall_score(yts , y_mdl5_pred , average = 
'weighted')) 

#     ps_scr_5.append(precision_score(yts , y_mdl5_pred , average 
= 'weighted')) 

     

svm_scores = {'accuracy':np.mean(acc_s_5) , 
'recall':np.mean(rcl_s_5) , 'precision':np.mean(ps_scr_5)} 

print('SVM results for top five features for Accuracy ' , 
svm_scores['accuracy'] , 'Recall: ' , svm_scores['recall'], 'and 
Precision: ' , svm_scores['precision'] ) 

 

 

### We can see that the overall score with top five features is 
significantly greater than the overall score with all the features. 
Hence , we can see that feature selection is very important for 
SVM. 

 

## **AdaBoost** 

 

x_trainf = newdata[features.index[:5]] 

y_train = newdata['Status'] 

 

 

from sklearn.ensemble import AdaBoostClassifier 

from sklearn import metrics 
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x_trains,x_tests,y_trains,y_tests=train_test_split(x_trainf,y_train,test
_size=0.25) 

 

AdaModel=AdaBoostClassifier(n_estimators=100,n_classes=learni
ng_rate=1) 

model=AdaModel.fit(x_trains,y_trains) 

y_pred=model.predict(x_tests) 

 

print("Accuracy",metrics.accuracy_score(y_tests,y_pred)) 

print("Recall :",metrics.recall_score(y_tests,y_pred)) 

print("Precision (Naive Bayes) :",scores_rf['precision']*100) 

 

#**KNN** **Classification** 

 

from sklearn.preprocessing import StandardScaler 

from sklearn.neighbors import KNeighborsClassifier 

 

x=newdata.iloc[:,1:5] 

y=newdata.iloc[:,0] 

x_trains,x_tests,y_trains,y_tests=train_test_split(x,y,test_size=0.3,r
andom_state=4) 
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sc_x=StandardScaler() 

x_trains=sc_x.fit_transform(x_trains) 

x_tests=sc_x.fit_transform(x_tests) 

print(x_trains) 

 

classifier=KNeighborsClassifier(n_neighbors=19,p=2,metric='euclid
ean') 

classifier.fit(x_trains,y_trains) 

y_pred=classifier.predict(x_tests) 

print(y_pred) 

 

print("Accuracy (KNN) :",scores_rf['accuracy']*100) 

print("Recall (KNN) :",scores_rf['recall']*100) 

print("Precision (KNN) :",scores_rf['precision']*100) 
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INTRODUCTION 

 
Machine learning has become a mainstay in the field of information technology [1]. It is 

being increasingly used for a variety of tasks that involve prediction and classification. Given 

the tremendous scope of application of this new field, it is only natural that this area is 

undergoing lots of research and development. 

An important area in which machine learning has found wide spread application is particle 

physics research, beginning with applications to high-level physics analysis in the 1990s and 

2000s, followed by an explosion of applications in particle and event identification and 

reconstruction in the 2010s.  

 

 

RHIC Collider 

 

RHIC is the first machine in the world capable of colliding heavy ions, which are 

atoms which have had their outer cloud of electrons removed. RHIC initially used gold ions 

as it is one of the heaviest common elements and have densely packed core. RHIC collides 

two beams of gold ions moving in 

opposite direction (head on collision) 

near the speed of light (called 

relativistic speed). The beam travels in 

opposite direction around 2.4 miles. 

When ions collide in such high speed a 

fascinating thing happened. 

Temperature inside the RHIC is 

thousands of times greater than the 

temperature of the sun. It is also  

famous for- “the world’s only machine         fig 1: RIHC Collider 

 capable of colliding high-energy beams of polarized protons, and is a unique tool for 

exploring the puzzle of the proton's 'missing' spin.” It contains two largest experiments 

called STAR and PHENIX and in addition other small experiments named as PHOBOS and 

BRAHMS. Every detector is specialized measuring different phenomenon. 

 

The Large Hadron Collider 

 
LHC [2] was built by the European Organization for Nuclear Research (CERN) 

between 1998 and 2008 in collaboration with over 10,000 scientists and hundreds of 

universities and laboratories, as well as more than 100 countries. It lies in a tunnel 27 

kilometres (17 mi) in circumference and as deep as 175 metres (574 ft.) beneath the France-
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Switzerland border near Geneva. The first collisions were achieved in December 2009 at 

energy of 3.5 Tev per beam. After upgrade it reached 6.5 Tev per beam (13 Tev total 

collision energy, present world record). At 

the end of 2018, it made shutdown for two 

years for making upgrade and maintenance. 

Initial focus of the researcher was to 

investigate the existence of Higgs Boson 

which is predicated theoretically, but not 

initially experimentally found due to its high 

mass and elusive nature. At the year of 2012 

CERN scientists  

confirmed the Higgs Boson, which is great        

fig 2: LHC                                           success of LHC. LHC also searched for super 

symmetric particle, other hypothetical particles and unsolved question in particle 

physics 

 

EIC Collider 

The computers and smartphones used every day depend on what we learned about 

the atom in the last century. All information technology—and much of the economy 

today—relies on understanding the electromagnetic force between the atomic nucleus and 

the electrons that orbit it. The science of that force is well understood but still know little 

about the microcosm within the protons and neutrons that make up the atomic nucleus. 

That’s why Brookhaven Lab is building a new machine—an Electron-Ion Collider [3], or EIC—

to look inside the nucleus and its protons and neutrons.  

 

    Fig 3: The EIC in outline 
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The EIC will be a particle accelerator that collides electrons with protons and nuclei to 

produce snapshots of those particles’ internal structure—like a CT scanner for atoms. The 

electron beam will reveal the arrangement of the quarks and gluons that make up the 

protons and neutrons of nuclei. The force that holds quarks together, carried by the gluons, 

is the strongest force in Nature. The EIC will allow us to study this “strong nuclear force” and 

the role of gluons in the matter within and all around us. What we learn from the EIC could 

power the technologies of tomorrow. 

 

Our aim 

 

Physicists at the Electron Ion Collider (EIC) rely on detailed simulations of particle 

collisions to build expectations of what experimental data may look like under different 

theory modelling assumptions. Petabytes of simulated data are needed to develop analysis 

techniques, though they are expensive to generate using existing algorithms and computing 

resources. The modelling of detectors and the precise description of particle cascades as 

they interact with the material in the calorimeter are the most computationally demanding 

steps in the simulation pipeline. We therefore try to predict the events without using heavy 

simulator software for Athena EIC calorimeter. 

 

 

 

Technology Used  
 

• Root 

ROOT [4] is a framework for data processing, born at CERN, at the heart of 

the research on high-energy physics. You can save your data (and any C++ object) in 

a compressed binary form in a ROOT file. The object format is also saved in the same 

file: the ROOT files are self-descriptive. Even in the case the source files describing 

the data model are not available, the information contained in a ROOT file is be 

always readable. 

 ROOT provides a data structure, the tree, that is extremely powerful for fast 

access of huge amounts of data - orders of magnitude faster than accessing a normal 

file. Data saved into one or several ROOT files can be accessed from your PC, from 

the web and from large-scale file delivery systems used e.g., in the GRID. ROOT trees 

spread over several files can be chained and accessed as a unique object, allowing 

for loops over huge amounts of data. 

 Powerful mathematical and statistical tools are provided to operate on your 

data. The full power of a C++ application and of parallel processing is available for 
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any kind of data manipulation. Data can also be generated following any statistical 

distribution and modelled, making it possible to simulate complex systems. 

 

• GEANT3 

GEANT [5] is the name of a series of simulation software designed to describe 

the passage of elementary particles through matter, using Monte Carlo methods. 

The name is an acronym formed from "GEometry ANd Tracking". Originally 

developed at CERN for high energy physics experiments, GEANT-3 has been used in 

many other fields. 

 

 

• Calorimeters 

A calorimeter [6] measures the energy a particle loses as it passes through. It 

is usually designed to stop entirely or “absorb” most of the particles coming from a 

collision, forcing them to deposit all of their energy within the detector, thus 

measuring their full energy. Calorimeters have to perform two different tasks at the 

same time – stopping particles and measuring energy loss – so they usually consist of 

layers of different materials: a “passive” or “absorbing” high-density material – for 

example, lead – interleaved with an “active” medium such as plastic scintillators or 

liquid argon. 

         Fig 4: The barrel electromagnetic calorimeter of ATHENA 
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Electromagnetic calorimeters measure the energy of electrons and photons 

as they interact with the electrically charged particles in matter. Hadronic 

calorimeters sample the energy of hadrons (particles containing quarks, such as 

protons and neutrons) as they interact with atomic nuclei. Calorimeters can stop 

most known particles except muons and neutrinos. 

 

The dataset 
 

The dataset used in this project was generated from a detector. The dataset was in 

.dat format that was generated using root, we had to convert it into csv to work with it. The 

resultant csv file contains 5000 simulations and every row represent a simulation. We have 

generated the csv using python script. There was no need for further pre-processing or 

cleaning the dataset. 

 

  

Generating Data 
 

Model Used 
  

For this experiment we have decided to use Generative adversarial networks [7] or 

GAN as a recently developed technique for learning in both semi-supervised and 

unsupervised mode. These networks obtain it through modelling high-dimensional 

distributions of data implicitly. 

GANs have two main blocks (two neural networks) which compete with each other 

and are able to capture, copy, and analyse the variations in a dataset. The two models are 

usually called Generator and Discriminator. 

 

1) Discriminator – It is a supervised approach. It is a simple classifier that predicts data is 

fake or real. It is trained on real data and provides feedback to a generator. 

 

2) Generator – It is an unsupervised learning approach. It will generate data that is fake data 

based on original(real) data. It is also a neural network that has hidden layers, activation, 

loss function. Its aim is to generate the fake image based on feedback and make the 

discriminator fool that it cannot predict a fake image. And when the discriminator is made a 

fool by the generator, the training stops and we can say that a generalized GAN model is 

created. 
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GANs have been gaining considerable attention, and the desire to use GAN in many fields is 

growing. GANs have been successfully implemented for solving a variety of tasks such as 

image generation from descriptions getting high-resolution images from low-resolution 

ones predicting which drug could treat a certain disease, Object detection, retrieving images 

that contain a given pattern Facial Attribute Manipulation, Anime Character Generation, 

Image to Image Translation and many more. 

 

 
Fig 5: Block diagram of the Generative Adversarial Network (GAN). 

 

Activation Function Used 
 

ReLU (Rectified Linear Unit) [8] Activation Function is the most used activation function in 

the world right now. Since, it is used in almost all the convolutional neural networks or deep 
learning. 

Fig 6: ReLU activation function 
 
 
As you can see, the ReLU is half rectified (from bottom). f(z) is zero when z is less than zero 
and f(z) is equal to z when z is above or equal to zero. 
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Range: [ 0 to infinity) 
 
The function and its derivative both are monotonic. 
 
But the issue is that all the negative values become zero immediately which decreases the 
ability of the model to fit or train from the data properly. That means any negative input 
given to the ReLU activation function turns the value into zero immediately in the graph, 
which in turns affects the resulting graph by not mapping the negative values appropriately. 
 

Leaky ReLU 
 
It is an attempt to solve the dying ReLU problem 
 

 
Fig 7: ReLU v/s Leaky ReLU 

 
The leak helps to increase the range of the ReLU function. Usually, the value of a is 0.01 or 
so. 
When a is not 0.01 then it is called Randomized ReLU. 
Therefore, the range of the Leaky ReLU is (-infinity to infinity). 
 

Sigmoid activation function 
 
The sigmoid activation function [9] (also called logistic function) takes any real value as 
input and outputs a value in the range (0,1). It is calculated as follows: 
 

S (x) = 
1

1+𝑒−𝑥
 

 
where x is the output value of the neuron. Below, we can see the plot of the sigmoid 
function when the input lies in the range [-10, 10]: 
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fig 8: Sigmoid function 
 
When the output value is close to 1, the neuron is active and enables the flow of 
information, while a value close to 0 corresponds to an inactive neuron. Also, an important 
characteristic of the sigmoid function is the fact that it tends to push the input values to 
either end of the curve (0 or 1) due to its S-like shape. 
 

Tanh 
 
Another activation function that is common in deep learning is the tangent hyperbolic 
function [10] simply referred to as tanh function. It is calculated as follows: 

 
 
We observe that the tanh function is a shifted and stretched version of the sigmoid. Below, 
we can see its plot when the input is in the range [-10, 10]: 

 
Fig 9: tanh activation function 

The output range of the tanh function is (-1, 1) and presents a similar behaviour with the 
sigmoid function. The main difference is the fact that the tanh function pushes the input 
values to 1 and -1 instead of 1 and 0 
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Generating simulation 
 
We have our data in the form of detector cells which have been flattened down into 

1d array of length 121. 
  

Fig 6: Flattened down data 
 
We have 5000 simulations from these detector cells and we wish to generate another 

121 such simulations. 
 

• Generator model 
 

In the generator model we have one input layer and one output layer and two 
hidden layer and activation function leaky ReLU and adam optimizer. For output layer we 
have used tanh activation function and binary cross entropy loss function 

 
• Discriminator module 

 
In the discriminator module we have one input and output layer and three hidden 

layers where leaky ReLU activation is used and for output layer there is sigmoid 
activation function is used. We also added dropout layer to reduce overfitting. We also 
used adam optimizer and binary cross entropy loss function.  

 
We have tried to create a system similar to moving averages. We have generated 121 fresh 
simulations, removed the first 100 simulations and added the newly generated data to old 
data, then generated 121 new simulations again. We have trained the data for 10 epochs. 
Since this is the simulation, we had to manually verify the data by plotting it for each run. 
This has been successful. 
 
 
 

Result 
 

To manually verify the data we had to plot it for each run. 
 
 

Original     Simulated 
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Conclusion 
From the above images we can say that we can successfully generate fresh simulation. We 
can implement the Wasserstein loss function for better results from the GAN in future. 
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Abstract 

 

Corona virus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus. 

The novel RNA virus was first identified from an outbreak in Wuhan, the capital of the 

province of Hubei in China, in December 2019. Within a very short time span, it spread 

worldwide. The World Health Organization (WHO) declared this a Public Health 

Emergency of International Concern on 30 January, 2020 and a pandemic on 11 March, 

2020. Most people infected with the virus has experienced mild to moderate respiratory 

illness and recovered without any special treatment. But symptoms can progress to a 

severe form of pneumonia with critical complications, including septic shock, pulmonary 

edema, acute respiratory distress syndrome and multi-organ failure. To save these 

serious patients and prevent the spreading, fast detection of COVID-19 has become a 

necessity. RT-PCR test is very accurate and reliable in detection of COVID-19 but it takes 

2 to 3 days to publish the result, whereas the rapid antigen test gives faster result but it 

can miss some cases. So, researchers are using different deep learning methods to 

develop new models from chest x-ray images for the detection of Covid-19. In this 

research, we analysed existing methods for the detection of Covid-19 using different 

deep learning techniques, compared their performances. And finally, we built a Model 

using CNN that have classified three different types of lungs – Covid-19, Normal, and Viral 

Pneumonia with 91% accuracy. 
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1.  INTRODUCTION 

The newly identified Coronavirus Disease 2019, subsequently termed COVID-19, is highly 
transmittable and pathogenic. These viruses are transmitted in human body via mammals 
like bats. However, genome sequencing of the virus suggests that the sequences are 
almost identical and share, 79.6% identity to SARS-CoV. Also, in [1] authors showed that 
it is 96% identical at the whole-genome level to bat coronavirus. 
 In a very short span, the virus spread to the South-east Asian countries and Europe. 
Since, the outbreak of the pandemic, it has been speculated that the virus was emerged 
from laboratory. The transmission of COVID-19 is rapid, with the number of confirmed 
cases reaching over 480 million globally as of April 2022, and with more transmissible and 
violent mutants appearing over time. 
 The transmission of SARS-CoV-2 occurs through respiratory routes as form of 
droplet. Large proportion of the patients show mild symptoms and recover within few 
weeks without significant treatment. A significant proportion of the population are 
asymptomatic. Most common symptoms include fever, cough shortness of breath and 
Gastrointestinal symptoms. The infection may spread to cardiovascular system, 
gastrointestinal system, kidney, liver. In severe cases patients with acute respiratory 
distress syndrome (ARDS) may die of multiple organ failure induced by “cytokine storm” 
[2]. In a study [3] shows majority of the patients have altered lung function and residual 
ground glass opacity were present in 75% of the patients even after three months. 
 Realtime Reverse Transcription-Polymerise Chain Reaction (RT/PCR) is considered 
the gold standard to detect COVID-19. During this test viral RNA are extracted from 
respiratory tracks and treated with several chemical solutions to extract only RNA present 
in the sample. The mixture then placed into a RT-PCR machine. RTPCR tests are usually 
time consuming with results take several days to be published. Delays in publishing test 
results leads to delay in treatment of the patient. In such situation Artificial Intelligence 
may play a vital role in detection of the disease and help distribute the medical resources 
efficiently.  
 Several studies have been conducted to detect COVID-19 using images generated 
by Computed Tomography (CT), X-Ray and Ultrasound. Common CT findings include 
ground glass opacities (GGO), air space consolidation at early stages and peak stages 
respectively. Common X-ray findings are opacities that are similar to the viral pneumonia 
features. X-Ray images do not show any abnormality in early stages. Based on these 
features a deep learning model can classify an image of a healthy lung with infected lung 
or classify different pneumonia (viral, bacterial) with COVID even detect the severity of 
the disease with high accuracy. Efficient, Timely and accurately detection is key to cease 
the spread of COVID-19. An artificial intelligence-based model marks all these 
parameters. In this study we have compared 10 such studies based on different 
parameters. And based on the literature review we implemented our own model using 
CNN that shows 91% accuracy. 



2.  RELATED WORKS 
 
To fight against COVID-19 epidemic, recently, a large number of works have been carried 
out to detect COVID-19 using X-ray images with the help of different AI-based techniques. 
Different deep learning methods and solutions were proposed to improve the network 
performances to classify COVID-19, normal, and other lung diseases. 
 Tawsifur Rahman et. al. [4] have used image enhancement technique on a large 
dataset consisting of 18,479 images with 8851 normal, 6012 non-COVID lung infections, 
and 3616 COVID-19 Chest X-ray images and their corresponding ground truth lung masks 
for lung segmentation. Five different image enhancement techniques: histogram 
equalization, contrast limited adaptive histogram equalization, image complement, 
gamma correction, and balance contrast enhancement technique were used to 
investigate the effect on detection. A novel U-net model was proposed for lung 
segmentation, that showed an accuracy of 98.63%. Six different Convolutional Neural 
Networks (ResNet18, ResNet50, ResNet101, InceptionV3, DenseNet201, and ChexNet) 
and a shallow CNN model were investigated on the plain and segmented lung images. 
Finally, DenseNet201 was the best performing network for the gamma-corrected 
segmented lung images in Covid-19 detection with 95.11% accuracy. And also, ChexNet 
showed the best performance on gamma-corrected non-segmented images for detection 
with 96.29% accuracy. Score-CAM visualization is used to highlight the regions used by 
CNN in making decisions. 
 Tej Bahadur Chandra et. al. [5] presented an automatic COVID screening system 
that uses different radiomic texture features (First Order Statistical Feature, Gray Level 
Co-occurrence Matrix texture feature, Histogram of Oriented gradients) extracted from 
Chest X-ray images to identify the normal, COVID-19, and pneumonia infected patients. 
To select the most informative features, Binary Grey Wolf Optimization is used. The 
selected features are used to train the model using five supervised classification 
algorithms, namely – Decision Tree, Support Vector Machine, K-Nearest Neighbour, Naïve 
Bayes, and Artificial Neural Network. The final prediction of the validation set is the 
majority vote of these classifiers. The classifiers were evaluated using 10-fold cross-
validation setup. They used 2088 images (696 normal, 696 COVID-19, and 696 
pneumonia) for training-testing and 258 images (86 images of each category) for 
validation. In phase-I, the normal and abnormal images are segregated with 98.062% 
accuracy. In phase-II, the abnormal images are further classified to segregate COVID-19 
and pneumonia, with 91.329% accuracy. 
 Ghulam Gilanie et. al. [6] proposed an automatic Covid-19 detection method using 
CNN, with public Chest X-ray and CT scan image dataset to distinguish normal, Covid-19 
and pneumonia. The dataset consists of 7021 images of each normal, and pneumonia, 
while 1066 images of Covid-19 infection. They designed the CNN model using 14 layers 
consisting of 8 convolution layers, 4 fully connected layers, 2 max pooling layers and used 
activation function ReLU. Finally, they achieved an average accuracy of 96.68%. 



 Emtiaz Hussain et. al. [7] proposed a CNN model called “CoroDet” using raw chest 
x-ray and CT scan images to perform 2 class classification (COVID and Normal), 3 class 
classification (COVID, Normal, and pneumonia), and 4 class classification (COVID, Normal, 
viral pneumonia, and bacterial pneumonia). The dataset consists of total 7390 images 
with 3108 normal, 2843 COVID-19, and 1439 pneumonia (both viral and bacterial) images. 
The CNN model was designed using 22 layers consisting of 18 Convolution + MaxPooling 
layers, 1 flatten layer, 2 dense layers, and 1 LeakyReLU layer. Batch Normalization was 
used. The model was trained using Adam optimizer, learning rate 0.0001, batch size 10, 
epoch 50. The model achieved 99.1% accuracy for 2 class classification, 94.2% accuracy 
for 3 class classification, and 91.2% accuracy for 4 class classification, with 5-fold cross-
validation. Precision, Recall, and F1-score for each class in each classification is evaluated 
and found in the range between 86.15% to 97.51%. 
 Michael J. Horry et. al. [8] used transfer learning from deep learning models to 
identify Normal, COVID-19, and Pneumonia infected lungs using X-ray, CT scan, and 
Ultrasound images. The images were pre-processed using histogram equalization, 
resizing, and data augmentation. Different pre-trained CNN models like VGG16, VGG19, 
Xception, InceptionResNet, InceptionV3, NASNetLarge, DenseNet121, ResNet50V2 were 
used. The models were tuned using Keras-tune. Each model was then trained 5 times over 
100 epochs. Each classifier was trained on the ImageNet weights for transfer learning. 
Based on the performances of the models the VGG19 model has been chosen for the 
multimodal image classification test. The VGG19 model was tuned with appropriate 
parameters for all three lung image modes. Ultrasound mode provided the best result in 
classifying normal vs abnormal lungs with a sensitivity of 97% and a positive predictive 
value of 99%. The abnormal lungs were further classified into COVID-19 vs pneumonia, in 
which also ultrasound showed the best result with a sensitivity of 100% and positive 
predictive value of 86%.   
 Sara Hosseinzadeh Kassani et. al. [9] compared different deep-learning based 
feature extraction frameworks namely MobileNet, DenseNet, Xception, ResNet, 
InceptionV3, InceptionResNetV2, VGGNet, NASNet, for automatic COVID-19 
classification. The extracted features were then fed into several machine learning 
classifiers such as Decision Tree, Random Forest, XGBoost, AdaBoost, Bagging classifier 
and LightGBM, to classify subjects as COVID-19 or not. Finally, a 10-fold cross validation 
technique was adopted to evaluate the average generalization performance. They used 
137 Covid-19 positive images (117 chest X-ray images and 20 CT images) and 137 normal 
chest images (117 chest X-ray images and 20 CT images). The DenseNet121 feature 
extractor trained by Bagging tree classifier (used 5 trees in the forest) achieved the best 
performance with an accuracy of 99%. The second-best was a hybrid of the ResNet50 
feature extractor with LightGBM (used 1000 trees in the forest, Class_weight: Balanced, 
Reg_alpha: 0.1, Reg_lambda: 0.1, Learning rate: 0.001, Num_leaves: 400, Boosting: 
“dart”) with 98% accuracy. Detection rate is worst on the features extracted by 
ResNet101V2 trained by AdaBoost classifier with 76% accuracy. 



 Harsh Panwar et. al. [10] have proposed a CNN based method “nCOVnet”, using 
142 images of COVID positive lungs and 142 images of healthy lungs. The model is made 
of 24 layers consisting of 1 input layer, next 18 Convolution-MaxPooling layers, 1 average 
pooling layer, 1 Flatten layer, 2 Dense layers, and 1 Dropout layer. The model is optimized 
using Adam optimizer, and achieved 88.10% accuracy, 97.62% sensitivity, and 78.57% 
specificity using confusion matrix. The model was trained for 80 epochs with learning rate 
0.0001, where accuracy lies between 93-97%. The model can classify COVID positive 
patients correctly with 97.97% confidence and COVID negative patients correctly with 
98.68% confidence.    
 Talha Burak Alakus et. al. [11] have used six different deep learning models namely 
Artificial Neural Network (ANN), Convolutional Neural Network (CNN), LSTM, RNN to 
develop a prediction model. Two hybrid models CNNLSTM and CNNRNN were developed. 
They filtered and reduced the original dataset from 5644 to 600 images consisting of 520 
normal and 80 COVID-19 infected lung images. When 10-fold cross validation was used, 
LSTM has performed better with AUC score of 62.50%, Accuracy of 86.66%, F1-Score of 
91.89% and Recall of 99.42%. When train-test-split approach was used, CNNLSTM gives 
the best result with AUC of 90%, accuracy of 92.30%, F1-Score of 93%, precision of 92% 
and recall of 93.68%. 
 Ghulam Muhammad et al. [12] used LUS images of size 512 x 512 of patients for 
covid-19 detection. ResF was used as the building module of the proposed CNN model. 
The ResF module has convolutional operations, batch normalization (BN) and a rectifier 
linear unit (ReLU). After the first ResF module there are five blocks, where each block 
consists of two ResF module 1 connector ResF module and 1 average pooling. After the 
end of 5th block one global average pooling (GAP), a fully-connected (FC) layer and a 
softmax layer with three outputs were used. The total learnable parameter of the 
proposed model is around 0.4 M (million). The model gives an average accuracy of 86.4%. 
A total of 45 videos of COVID-19, 23 for bacterial pneumonia, and 53 for healthy lung 
ultrasound as well as 18 images for covid-19, 7 for bacterial pneumonia and 15 for healthy 
were used for the experiment. The fused feature vector then fed to FC layers followed by 
softmax layer. Proposed model with fusion gives accuracy of 92.5%. The accuracy of 
proposed model is better than ResNet50 and SqueezeNet which gives the accuracy [0-1] 
of 0.844 and 0.900 respectively.  
 S. A. Fattah et al. [13] proposed a model where a modified CNN is adjoined to the 
second stage LSTM to classify images in four severity scores between 3 and 4. In proposed 
CNN model an autoencoder block is used to extract features. For classification purpose a 
depth separable convolution is used with 3 separate kernels of size 3 x 3 x 1. The input 
image is also passed into DenseNet-201 and the outputs are flattened and fetchers are 
added. Finally, a fully connected layer size 128, 64 and 4 are used to classify the images 
into 4 scores. In this model LSTM takes input from output of CNN layer. Three stacked 
LSTMs and a softmax layer is used. The proposed CNN + LSTM network gives an accuracy 
of 79.1% for linear probe data and 67.7% for convex probe data. 



3.  COMPARISON OF MODELS 
 
In this section we have created a comparison table depending on their architecture, 
dataset used, classification types, training parameters, and accuracy. The details are listed 
in the following comparison table. 
 

Ref. 
No. 

Dataset used Model 
architecture 

Pre-trained model 
used 

Training 
Parameters 

Classification 
types 

Accuracy and 
other measures 

[4] 18,479 images 
with 8851 

normal, 6012 
non-COVID lung 
infections, and 
3616 COVID-19 

Chest X-ray 
images and 

their 
corresponding 
ground truth 
lung masks 

Pre-trained 
models with 5 

image 
enhancement 

techniques and U-
net segmentation 

network 

ResNet18, 
ResNet50, 

ResNet101, 
InceptionV3, 

DenseNet201, and 
ChexNet and a 

shallow CNN model 

Batch size = 4, 
epochs = 20, 

 
learning rate 

= 0.001, 
 

optimizer 
= Adam 

Covid / 
Normal / 

Non-Covid 
lung opacity 

(3 class) 

Best 96.29% accuracy 
when used ChexNet 
on gamma-corrected 

non-segmented 
images 

[5] 2088 images 
(696 normal, 

696 COVID-19, 
and 696 

pneumonia) for 
training-testing 
and 258 images 
(86 images of 

each category) 
for validation 

Decision Tree, 
Support Vector 
Machine, K-NN, 

Naïve Bayes, and 
Artificial Neural 
Network. The 

final prediction of 
the validation set 

is the majority 
vote of these 

classifiers. 

None None Normal / 
COVID-19 / 
Pneumonia 

(3 class) 

Classified normal and 
abnormal images 

with 98% accuracy. 
Classified COVID-19 

and pneumonia, with 
91% accuracy. 

[6] 7021 images of 
each normal, 

and pneumonia, 
while 1066 

images of Covid-
19 infection 

CNN model using 
14 layers 

consisting of 8 
convolution 

layers, 4 fully 
connected layers, 

2 max pooling 
layers 

None Batch size = 128, 
Epochs = 25, 

Activation 
function = ReLU 

Covid / Non-
covid / 

Pnenumonia 
(3 class) 

Accuracy for 
Normal: 97.42%, 
Covid: 97.02%, 

Pneumonia: 95.61%, 
Overall accuracy: 

96.68% 

[7] COVID-R dataset 
 

2 class: 500 
covid-19, 800 

normal 
 

3 class: 500 
covid-19, 800 
normal, 800 
pneumonia-

bacterial 
 

4 class: 500 
covid-19, 800 
normal, 400 
pneumonia 
viral, 400 

pneumonia 
bacterial 

22 layers 
consisting of 18 
Convolution and 

MaxPooling 
layers, 1 flatten 
layer, 2 dense 
layers, and 1 
output layer 

None Batch size = 10, 
 

Epochs = 50, 
 

Learning rate = 
0.0001 

 
Activation 

function = leaky 
RelU 

 

Covid / 
 Non-Covid 

(2 class) 
 

Covid /  
Non-Covid / 
Pneumonia 

(3 class) 
 

Covid /  
Non-Covid / 

Viral 
Pneumonia / 

Bacterial 
Pneumonia 

(4 class) 

4 class: 
Accuracy: 91%, 
F1-score: 90%, 
Recall: 91%, 
Precision: 92% 
 
3 class: 
Accuracy: 94%, 
F1-score: 91%, 
Recall: 92% 
Precision: 94% 
 
2 class:  
Accuracy: 99%, 
F1 -score: 96%, 
Recall: 95%, 
Precision: 97% 



[8] Images 
gathered from 

different 
sources which 

includes COVID-
CT, POCOVID-

Net dataset, NIH 
Chest X-Ray 

COVID-19 Image 
data collection. 

Dataset 
contains CT, X-

ray and 
Ultrasound 

images of lungs 

Based on the 
initial 

comparative 
study VGG19 was 
selected among 

other model 
which was then 
optimized for 

Covid-19 
detection 

VGG19 Epochs = 100 
 

Learning rate = 
0.0001 - 0.000001 

 
Drop rate =  

0.1 - 0.2 
 

Batch size = 2 - 8 

Covid /  
Non-Covid  

(2 class) 

X-ray: 
Precision = 85 % - 

89% 
Recall = 83%-89% 

F1 = 84%-89% 
 

Ultrasound: 
Precision = 94% - 

100% 
Recall = 97%-100% 

F1 = 96%-100% 
 

CT: 
Precision = 79 % - 

84% 
Recall = 81%-83% 

F1 = 81%-83% 

[9] 117 chest X-ray 
images, 20 CT 

images of Covid-
19 positive 

lungs. 
117 X-ray 
images of 

healthy lung 
from Kaggle's 
Pneumonia 

dataset and 20 
CT images from 
Kaggle’s RSNA 

pneumonia 
detection set. 

Features 
extracted from 

pre-trained 
model, fed into 

different ML 
classifiers, which 

includes Descision 
Tree, Random 

Forest, XGBoost, 
AdaBoost, 

Bagging classifiers 
& LightGBM. 

VGG16 
VGG19  

Xception  
Resnet50 

Resnet152 
Resnet101V2 
Resnet50V2 

Resnet152V2 
NASNetMobile 
NasNetLarge 
MobileNet 

InceptionV3 
InceptionResNetV2 

DenseNet201 
DenseNet121 

N/A Covid /  
Non-covid  

(2 class) 

Accuracy = 99% 
(Bagging classifier 
and DenseNet121) 

 
Precision = 99% 

(Bagging classifier 
and InceptionV3) 

 
F1 = 99% (Bagging 

classifier and 
InceptionV3, 
MobileNet) 

 
Recall = 99% (Bagging 

classifier and 
InceptionV3) 

[10] 142 posterior X-
ray images of 

Covid-19 
compiled by 

Cohen et al, 142 
normal images 
healthy lungs 

taken from 
Kaggle's chest X-

rays 

A 24 layered 
model. Accepts 

224 x 224 x 3 
sized images. 

Next 18 layers are 
of VGG16 for 

feature 
extraction. Next 5 

layers includes 
dense layer, drop 

out layer and 
output layer. 

VGG16 Epochs = 80 
 

Learning rate = 
0.0001 

Covid /  
Non-covid  

(2 class) 

Sensitivity /  
(true positive) = 

97.62% 
 

Specificity = 78.57% 
Training loss = 0.2% 

Accuracy = 97% 

[11] Hospital 
Israelita Albert 
Einstein at Sao 
Paulo, Brazil. 

Dataset 
contains 111 

laboratory 
findings from 
5644 various 

patients. 

Six different 
model has been 

developed to 
detect the 

disease. The 
models include 

ANN, CNN, LSTM, 
RNN and two 
hybrid models 
CNNLSTM and 

CNNRNN. 

None Epochs = 250 
 

Learning rate = 
0.0001 

 
Activation 

function = RelU 

Covid /  
Non-covid  

(2 class) 

10-fold cross 
validation: 

Accuracy = 86% 
F1 = 91% 

Precision = 86% 
Recall 99% for LSTM 

 
80-20 train-test split: 

Accuracy = 92% 
F1 = 93% 

Precision = 92% 
Recall 93% for 

CNNLSTM 

[12] A total of 45 
videos of 

COVID-19, 23 

ResF was used as 
CNN Model which 
has 5 blocks, each 

ResNet50 
SqueezeNet 

 

N/A Covid / 
healthy / 

Average accuracy = 
86.4% 



for bacterial 
pneumonia, and 

53 for healthy 
lung ultrasound 

as well as 18 
images for 

covid-19, 7 for 
bacterial 

pneumonia and 
15 for healthy 

were used 

block consists of 2 
ResF module, 1 
connector ResF 
module, and 1 

average pooling. 
After 5th block 1 
global average 
pooling, 1 fully-
connected layer 
and a softmax 

layer with 3 
outputs were 

used 

bacterial 
pneumonia 

(3 class) 
 

[13] Italian COVID-19 
Lung Ultrasound 

Database 
(ICLUS-DB) 

which contains 
58 LUS videos 
(convex and 

linear) from 29 
patients which 
gives a total of 
14311 frames 

scored based on 
a 4-leveling 

scoring system. 

In proposed cnn 
model an 

autoencoder 
block is used to 
extract features. 

A depth separable 
convolution is 

used with 3 
separate kernels 
of size 3 x 3 x 1 

DenseNet-201 
 

Proposed CNN 
+ LSTM 

Batch sizes = 64 
 

Epochs = 120 
 

Learning rate = 
0.001 

Severity 
measureme

nt rating:  
[0-3] with 0 

being 
perfectly 

healthy and 
3 being 
severely 
infected 

 

For linear probe 
data,  

accuracy = 79.1% 
  

 For convex probe 
data, 

accuracy = 67.7%  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4.  OUR METHODOLOGY 
 
Nowadays, majority of researchers are using machine learning methods for diagnosis. 
Most of them use traditional approaches for detection, classification and grading 
different abnormalities, which include feature selection, extraction, reduction, and 
classification through these features. The main issue with these methods is the time 
consumption for feature engineering. Further to this, these traditional methods have low 
performance measures. To cope with such issues, deep learning architectures were 
explored. And The potential of deep features motivated us towards the investigation of 
the CNN’s architecture. 
 
4.1 Dataset: 
 
 Chest X-ray images have been used from a publicly available dataset. It is basically 
a COVID-19 radiography database [14]. A team of researchers from Qatar University, 
Doha, Qatar, and the University of Dhaka, Bangladesh along with their collaborators from 
Pakistan and Malaysia in collaboration with medical doctors have created the database 
of chest X-ray images for COVID-19 positive cases along with Normal and Viral Pneumonia 
images. It consists of 21165 chest X-ray (CXR) images including 3616 COVID-19 images, 
10192 Normal images, 1345 Viral Pneumonia images, and 6012 Lung-opacity images, and 
their ground truth lung masks. 
TABLE: Number of images in the actual dataset 

                        Class                               Number of images 

 COVID-19                   3616 

 Normal               10192 

 Viral-Pneumonia                1345 

 Lung Opacity                6012 

      Total               21165 

 
Each Image is of size 299 x 299. Here, we have used only 1000 images of COVID-19, 1000 
images of Normal, and 1000 images of Viral Pneumonia images for training purpose. 
 
TABLE: Number of images used in experiment 

                 Class                                 Number of images 

 COVID-19                            1000 
 Normal                  1000 
 Viral pneumonia                           1000 

        Total                  3000 

 



 
Fig: Sample of different types of chest X-ray images  

 

4.2 The Proposed CNN architecture: 

 

 In this research, in order to classify images into Normal, COVID-19, and Viral 

Pneumonia, CNN has been used, because CNN is a state-of-the-art area of machine 

learning inspired by human brain. CNN works like a human visual system and is designed 

based upon the assumption that raw data consists of two-dimensional images, which 

enables certain properties to be encoded. So, CNN has been used, which works by 

convolving images with kernels to get feature maps. In a feature map, units are connected 

to previous layers through kernel weights and these weights are tweaked during training 

through a backpropagation process. Because same kernels have been used by all units, 

so, fewer weights have been trained by convolutional layer. Our proposed model is based 

on five basic components, namely convolutional layer, pooling layer, flatten layer, dense 

layer, and activation function. The components are used in different layers of our 

proposed model. A detailed discussion of each basic component is given below. 



i) Convolutional Layer: 

 This is the layer where the convolution process happens, and the CNN model learns. 

This layer performs most of the computations for a CNN model. It is the most important 

component of a convolutional network. It has some parameters and hyperparameters, 

namely filters, kernels, and K. Convolution layers extract features using these filters and 

then learns from them. For this reason, this layer is also known as the feature extraction 

layer. The input images are compared segment by segment to distinguish the similarities 

and differences among them. The segments are called features. The convolution layer 

extracts one or more features from the input images, and then using the image matrix, it 

creates a dot product and produces one or more matrix. If we have an image of size 5 x 5 

and the pixel values of the images are either 0 or 1, and the size of the filter matrix is 3 x 

3, then the 3 x 3 filter matrix will be multiplied by 5 x 5 image matrix, which is known as 

feature map. The filter moves from left to right with a specific stride value until it parses 

the full width. Then it moves down to the beginning left of the image with the same stride, 

and repeats the process until the full image is traversed. In convolutional layers, 

represented by the Eq. 

S (i, j) = (I ∗ K) (i, j) = Σm Σn I (m, n) K (i − m, j − n) 

feature maps are padded before convolution. Use of padding ensures feature maps of 

same dimensions. In the equation, I is an 2D array containing the input image and K is a 

kernel convolution function.  

 The main goal of this convolution layer is to extract high-level features like edges. 

Moreover, various operations are performed in this layer, including blur, sharpen, edge 

detection, by applying various filters. 

 If we have a volume of size W1 x H1 x D1 then we need four hyper parameters 

namely number of filters K, their spatial extent F, the stride S, and the amount of zero 

padding P. Then an output of size W2 x H2 x D2 is produced by the convolution layer. 

 

The equations for W2, H2, and D2 are given below: 

 W2 = (W1 - F + 2P)/(S + 1) 

 H2 = (H1 - F + 2P)/(S + 1) 

 D1 = D2 = K 

We have used eight convolution layers in our proposed model. 

 

ii) Pooling Layer: 

 The pooling layer is used repeatedly in convolution network to reduce the size of 

the volume when the image size is too large. This layer makes the convolution fast, 

prevents from overfitting, and reduces memory usage. There are various kinds of pooling 

layers, such as max pooling, average pooling, and sum pooling. Max pooling takes the 



largest value from the feature map, average pooling takes the average by calculating for 

each patch of the feature map, and sum pooling takes the sum of all elements in the 

feature map. The most popular and common type of pooling layer is max pooling. Two 

hyperparameters are required for the pooling layer, namely filter (F) and stride (S). 

 If the volume of an input image is W1 x H1 x D1, then an output of size W2 x H2 x 

D2 is produced by pooling layer. The equations for W2, H2, and D2 in pooling layer are 

given below: 

 W2 = (w1 - F)/(S + 1) 

 H2 = (H1-F)/(S+1) 

 D2 = D1 

For every convolution layer, we have used one MaxPooling layer. Therefore, we have 

used eight MaxPooling layers in our proposed model. 

 

iii) Flatten Layer: 

 In our model, after using the pooling layer, we have used a flatten layer to flat the 

whole network. The flatten layer transforms the entire pooled feature map matrix into a 

single column. Then this is being passed to the neural network for further processing. 

 

iv) Dense Layer: 

 After the flatten layer, we have used five dense layers. Dense layer is also known as 

a fully connected layer. In this layer, the input from the past layers is flattened from a 

matrix into a vector. After flattening, the volume of the previous layer is given input to 

the fully connected layer like a neural network. By looking at the output of the previous 

layer, this layer decides which features mostly match a particular class. It works on high-

level features that have specific weights. For this reason, a fully connected layer provides 

the correct probabilities for the different classes as it computes the products between 

the weights and the previous layer.  

 

v) Activation Function:  

 This function has been used to perform the data into non-linear form. The 

activation function that is used, is Rectifier Linear Unit (ReLU), and it is represented by 

the Eq.  

 f(x) = max (0, x) 

And at the last layer “softmax” function is used for multi-class classification. 
 
 
 
 
 
 



Model: "sequential" 
_________________________________________________________________ 
 Layer (type)                      Output Shape          Param #    
================================================================= 
 conv2d (Conv2D)                 (None, 256, 256, 32)      320        
                                                                  
 max_pooling2d (MaxPooling2D)    (None, 128, 128, 32)        0                                                                         
                                                                  
 conv2d_1 (Conv2D)               (None, 128, 128, 32)     9248       
                                                                  
 max_pooling2d_1 (MaxPooling2D)  (None, 64, 64, 32)          0                                                                       
                                                                  
 conv2d_2 (Conv2D)               (None, 64, 64, 64)      18496      
                                                                  
 max_pooling2d_2 (MaxPooling2D)  (None, 32, 32, 64)          0                                                                       
                                                                  
 conv2d_3 (Conv2D)               (None, 32, 32, 64)      36928      
                                                                  
 max_pooling2d_3 (MaxPooling2D)  (None, 16, 16, 64)          0                                                                       
                                                                  
 conv2d_4 (Conv2D)               (None, 16, 16, 128)     73856      
                                                                  
 max_pooling2d_4 (MaxPooling2D)  (None, 8, 8, 128)           0                                                                       
                                                                  
 conv2d_5 (Conv2D)               (None, 8, 8, 128)      147584     
                                                                  
 max_pooling2d_5 (MaxPooling2D)  (None, 4, 4, 128)           0                                                                       
                                                                  
 conv2d_6 (Conv2D)               (None, 4, 4, 128)      147584     
                                                                  
 max_pooling2d_6 (MaxPooling2D)  (None, 2, 2, 128)           0                                                                       
                                                                  
 conv2d_7 (Conv2D)               (None, 2, 2, 256)      295168     
                                                                  
 max_pooling2d_7 (MaxPooling2D)  (None, 1, 1, 256)           0                                                                       
                                                                  
 flatten (Flatten)               (None, 256)                 0          
                                                                  
 dense (Dense)               (None, 128)               32896      
                                                                  
 dense_1 (Dense)             (None, 64)                8256       
                                                                  
 dense_2 (Dense)             (None, 32)                2080       
                                                                  
 dense_3 (Dense)             (None, 16)                528        
                                                                  
 dense_4 (Dense)             (None, 3)                 51         
                                                                  
================================================================= 
Total params: 772,995 
Trainable params: 772,995 
Non-trainable params: 0 
________________________________________________________________

 

             Fig: Different layers of our proposed CNN model 



4.3. Training of the model 

 

 We implemented the proposed model using Keras and Tensorflow 2.8. The 

experiment was carried out on the Google Colaboratory using the free GPU. We have 

compiled our model using Adam optimizer with a learning rate of 0.001 and considered 

loss function as categorical cross entropy. The size of the batch is 32, and the value for 

the epoch is 20. An early stopping method was used to stop the training before 

completing 20 epochs if a possibility of overfitting occurs. And it stopped our training 

after 15 epochs.  
 

 

4.4. Performance Evaluation: 

 

 The performance of different networks for the testing dataset was evaluated after 

the completion of the training and validation phase and was compared using different 

performance metrics: precision, recall, F1 score, and accuracy. These values are 

calculated from the confusion matrix, using the following equations: 

 Accuracy (A) = (TP + TN)/((TP + FN)  + (FP + TN))  

 Precision (P) = TP/(TP + FP) 

 F1 Score (F1) = (2 * TP)/(2*TP + FN + FP) 

 

Here, true positive (TP) is used to denote the number of COVID-19 CXR images that were 

identified correctly as COVID-19. True Negative (TN) is used to denote the number of 

Normal and Viral Pneumonia images that were identified as Normal and Viral Pneumonia 

correctly. False Positive (FP) denotes the number of Normal and Viral Pneumonia images 

that were incorrectly identified as COVID-19 CXRs. False Negative (FN) denotes the 

number of COVID-19 CXRs that were incorrectly identified as Normal or Viral Pneumonia 

images. 

 

The calculated values of the different performance metrices were given below. 

 

 



We have plotted the confusion matrix as shown below. 

 

 
 

 

In order to demonstrate the performance of our CNN model, we have also plotted model 

loss and model accuracy for 15 epochs for 3 class classification. These figures explain how 

accurately the model has been trained. 

 

 



 

5. EXPERIMENTAL RESULTS AND DISCUSSION 
 

This section includes the experimental results and discussion on the performance of 

our proposed method. We also train the dataset using different transfer learning-

based methods like InceptionV3, VGG16, VGG19 etc. And finally, we observed that 

our proposed model gave significantly better accuracy than other pre-trained 

models. 
 

TABLE: Comparison of Accuracy of our model with others 

                Model                            Overall Accuracy (A) 

 InceptionV3                 88.17%               

 VGG16                         87.67% 

 VGG19                                            85% 

 Our Model                                     91% 
 

 

Our model accuracy is not significantly better than the other existing methods that 

were found during literature review. Accuracy can be further increased by parameter 

tuning, or by modifying the training dataset, or by using some image processing 

techniques on the input images before training.  

 
 
 

6. CONCLUSION 
 

In the previous section we saw various methods of detection of COVID-19 using the 

Convolutional Neural Network (CNN). The study shows that CNN is very suitable for 

image analysis and outperforms other machine learning models. As the database is 

not that huge researchers often use transfer learning with pre trained CNN.  Another 

observation shows that researchers mainly use chest X-Ray and CT scan. Though on 

some model the Ultrasound images of lungs gives better accuracy than of X-Ray or 

CT scan. The tweaking of the pre trained models is very effective. The final model 

accuracy and classification parameters are very promising. 

 

 

 

 

 



CODE 

 

• Creating_Directory.ipnyb 

 
from google.colab import drive 

drive.mount('/drive') 

 

import pandas as pd 

 

covid = pd.read_excel('/drive/My Drive/Colab Notebooks/COVID-

19_Radiography_Dataset/COVID.metadata.xlsx') 

covid 

 

normal = pd.read_excel('/drive/My Drive/Colab Notebooks/COVID-

19_Radiography_Dataset/Normal.metadata.xlsx') 

normal 

 

viral_pneumonia = pd.read_excel('/drive/My Drive/Colab Notebooks/COVID-

19_Radiography_Dataset/Viral Pneumonia.metadata.xlsx') 

viral_pneumonia 

 

# check the number of each cases 

 

print('Covid cases:', len(covid)) 

print('Normal cases:', len(normal)) 

print('Viral Pneumonia cases:', len(viral_pneumonia)) 

 

SAMPLE_SIZE = 1000 

 

covid['label'] = 0 

normal['label'] = 1 

viral_pneumonia['label'] = 2 

 

# only keep the related columns 

 

covid = covid[['FILE NAME', 'label']] 

normal = normal[['FILE NAME', 'label']] 

viral_pneumonia = viral_pneumonia[['FILE NAME', 'label']] 

 

covid 

 

df0 = covid.sample(SAMPLE_SIZE, random_state=26) 

df1 = normal.sample(SAMPLE_SIZE, random_state=26) 

df2 = viral_pneumonia.sample(SAMPLE_SIZE, random_state=26) 

 

df0 

 

data = pd.concat([df0, df1, df2]).reset_index(drop=True) 

data 

 

data['label'].value_counts() 

 

from sklearn.utils import shuffle 

 

data = shuffle(data) 

data 

 



from sklearn.model_selection import train_test_split 

 

df_train, df_test = train_test_split(data, test_size=0.2, random_state=26, 

stratify=data['label']) 

 

df_train 

 

df_test 

 

df_train['label'].value_counts() 

 

df_test['label'].value_counts() 

 

train_list = list(df_train['FILE NAME']) 

train_list 

 

val_list = list(df_test['FILE NAME']) 

val_list 

 

!mkdir '/drive/MyDrive/Colab Notebooks/base_dir' 

 

!ls '/drive/MyDrive/Colab Notebooks' 

 

# create 2 folders inside 'base_dir': 

# base_dir 

    ## train_dir 

        ### covid 

        ### normal 

        ### viral_pneumonia 

    ## val_dir 

        ### covid 

        ### normal 

        ### viral_pneumonia 

 

# create 2 folders inside 'base_dir' 

 

!mkdir '/drive/MyDrive/Colab Notebooks/base_dir/train_dir' 

!mkdir '/drive/MyDrive/Colab Notebooks/base_dir/val_dir' 

 

!ls '/drive/MyDrive/Colab Notebooks/base_dir' 

 

# create seperate folders inside train_dir for each class 

 

!mkdir '/drive/MyDrive/Colab Notebooks/base_dir/train_dir/covid' 

!mkdir '/drive/MyDrive/Colab Notebooks/base_dir/train_dir/normal' 

!mkdir '/drive/MyDrive/Colab Notebooks/base_dir/train_dir/viral pneumonia' 

 

!ls '/drive/MyDrive/Colab Notebooks/base_dir/train_dir' 

 

# create seperate folders inside val_dir for each class 

 

!mkdir '/drive/MyDrive/Colab Notebooks/base_dir/val_dir/covid' 

!mkdir '/drive/MyDrive/Colab Notebooks/base_dir/val_dir/normal' 

!mkdir '/drive/MyDrive/Colab Notebooks/base_dir/val_dir/viral pneumonia' 

 

!ls '/drive/MyDrive/Colab Notebooks/base_dir/val_dir' 

 

import os 

import shutil 



 

# copy images to train_dir folder 

 

for image in train_list: 

    filename = image + '.png' # add .png extension 

    target = int(data.loc[data['FILE NAME'] == image, ['label']].values) # get the label for 

a certain image 

     

    # match the target with the folder's name and source path of the image 

    if target == 0: 

        label = 'covid' 

        src = os.path.join('/drive/My Drive/Colab Notebooks/COVID-

19_Radiography_Dataset/COVID/images', filename) 

 

    elif target == 1: 

        label = 'normal' 

        filename = filename.capitalize() 

        src = os.path.join('/drive/My Drive/Colab Notebooks/COVID-

19_Radiography_Dataset/Normal/images', filename) 

 

    elif target == 2: 

        label = 'viral pneumonia' 

        src = os.path.join('/drive/My Drive/Colab Notebooks/COVID-

19_Radiography_Dataset/Viral Pneumonia/images', filename) 

 

    # destination path to image 

    dst = os.path.join('/drive/MyDrive/Colab Notebooks/base_dir/train_dir', label, filename) 

 

    # copy the image from the source to the destination 

    shutil.copyfile(src, dst) 

 

print('Copied successfully') 

 

# copy images to val_dir folder 

 

for image in val_list: 

    filename = image + '.png' # add .png extension 

    target = int(data.loc[data['FILE NAME'] == image, ['label']].values) # get the label for 

a certain image 

     

    # match the target with the folder's name and source path of the image 

    if target == 0: 

        label = 'covid' 

        src = os.path.join('/drive/My Drive/Colab Notebooks/COVID-

19_Radiography_Dataset/COVID/images', filename) 

 

    elif target == 1: 

        label = 'normal' 

        filename = filename.capitalize() 

        src = os.path.join('/drive/My Drive/Colab Notebooks/COVID-

19_Radiography_Dataset/Normal/images', filename) 

 

    elif target == 2: 

        label = 'viral pneumonia' 

        src = os.path.join('/drive/My Drive/Colab Notebooks/COVID-

19_Radiography_Dataset/Viral Pneumonia/images', filename) 

 

    # destination path to image 

    dst = os.path.join('/drive/MyDrive/Colab Notebooks/base_dir/val_dir', label, filename) 



 

    # copy the image from the source to the destination 

    shutil.copyfile(src, dst) 

 

print('Copied successfully') 

 

# check the number of train images in each folder 

 

print(len(os.listdir('/drive/MyDrive/Colab Notebooks/base_dir/train_dir/covid'))) 

print(len(os.listdir('/drive/MyDrive/Colab Notebooks/base_dir/train_dir/normal'))) 

print(len(os.listdir('/drive/MyDrive/Colab Notebooks/base_dir/train_dir/viral pneumonia'))) 

 

# check the number of validation images in each folder 

 

print(len(os.listdir('/drive/MyDrive/Colab Notebooks/base_dir/val_dir/covid'))) 

print(len(os.listdir('/drive/MyDrive/Colab Notebooks/base_dir/val_dir/normal'))) 

print(len(os.listdir('/drive/MyDrive/Colab Notebooks/base_dir/val_dir/viral pneumonia'))) 

 

• InceptionV3.ipnyb 
 

from tensorflow.keras.applications import InceptionV3 

 

inc_mod = InceptionV3( 

    include_top = False, 

    weights = 'imagenet', 

    input_shape = (224, 224, 3)  

)  

 

inc_mod 

 

inc_mod.summary() 

 

from tensorflow.keras.models import Model 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import AveragePooling2D, Flatten, Dense, Dropout, Input 

 

for layer in inc_mod.layers: 

  layer.trainable = False 

 

inc_mod.output 

 

# model = resnet_mod.output 

# model = AveragePooling2D(pool_size=(4, 4))(model) 

# model = Flatten(name="flatten")(model) 

# model = Dense(60, activation="relu")(model) 

# model = Dropout(0.5)(model) 

# model = Dense(3, activation="softmax")(model) 

# final_model = Model(inputs=resnet_mod.input, outputs=model) 

 

# final_model 

 

final_model = Sequential() 

final_model.add(inc_mod) 

final_model.add(Flatten()) 

final_model.add(Dense(60, activation='relu')) 

final_model.add(Dropout(0.5)) 

final_model.add(Dense(3, activation='softmax')) 

 

final_model 



 

LR = 0.001 

EPOCH = 50 

BATCH_SIZE = 32 

IMG_SIZE = (224, 224) 

 

from tensorflow.keras.optimizers import Adam 

 

final_model.compile(loss='categorical_crossentropy', optimizer=Adam(learning_rate=LR, 

decay=LR/EPOCH), metrics=['accuracy']) 

 

from tensorflow.keras.preprocessing.image import ImageDataGenerator 

 

train_datagen = ImageDataGenerator( 

    rotation_range = 0.2, 

    shear_range = 0.2, 

    horizontal_flip = True, 

    rescale = 1.0/255, 

    validation_split = 0.2 

) 

 

train_datagen 

 

test_datagen = ImageDataGenerator( 

    rescale = 1.0/255 

) 

 

test_datagen 

 

from google.colab import drive 

drive.mount('/drive') 

 

train_directory = '/drive/MyDrive/Colab Notebooks/base_dir/train_dir' 

val_directory = '/drive/MyDrive/Colab Notebooks/base_dir/val_dir' 

 

train_generator = train_datagen.flow_from_directory( 

    train_directory, 

    target_size = IMG_SIZE, 

    class_mode = 'categorical', 

    batch_size = 32, 

) 

 

train_generator 

 

test_generator = test_datagen.flow_from_directory( 

    val_directory, 

    target_size = IMG_SIZE, 

    class_mode = 'categorical', 

    batch_size = 32, 

    shuffle = False 

) 

 

test_generator 

 

history = final_model.fit( 

            train_generator, 

            steps_per_epoch = train_generator.samples // BATCH_SIZE, 

            epochs = EPOCH, 

            validation_data = test_generator, 



            validation_steps = test_generator.samples // BATCH_SIZE, 

        ) 

 

import matplotlib.pyplot as plt 

 

# create history loss and accuracy function 

def plot_loss_acc(his): 

    train_loss = his.history['loss'] 

    val_loss = his.history['val_loss'] 

    acc = his.history['accuracy'] 

    val_acc = his.history['val_accuracy'] 

    epochs = range(len(train_loss)) 

     

    plt.figure(figsize=(20, 8)) 

     

    plt.subplot(121) 

    plt.plot(epochs, train_loss, color='b', label='Train') 

    plt.plot(epochs, val_loss, color='r', label='Validation') 

    plt.legend() 

    plt.title('Model Loss') 

     

    plt.subplot(122) 

    plt.plot(epochs, acc, color='b', label='Train') 

    plt.plot(epochs, val_acc, color='r', label='Validation') 

    plt.legend() 

    plt.title('Model Accuracy') 

     

    plt.show() 

 

plot_loss_acc(history) 

 

 

 

## Classification Confusion Matrix 

 

# predict classes of validation data 

val_predict = final_model.predict(test_generator) 

 

val_predict 

 

import numpy as np 

 

predict_class = np.argmax(val_predict, axis=1) 

predict_class = predict_class.tolist() 

 

predict_class 

 

from sklearn.metrics import confusion_matrix, classification_report 

 

labels = ['Covid', 'Normal', 'Viral Pneumonia'] 

report = classification_report(test_generator.classes, predict_class, target_names=labels) 

print(report) 

 

import pandas as pd 

 

cm = confusion_matrix(test_generator.classes, predict_class) 

cm_df = pd.DataFrame(cm, 

                     index = ['COVID','NORMAL','VIRAL PNEUMONIA'],  

                     columns = ['COVID','NORMAL','VIRAL PNEUMONIA']) 



 

import seaborn as sns  

 

plt.figure(figsize=(8,6)) 

sns.heatmap(cm_df, annot=True, fmt='d') 

plt.title("Confusion Matrix") 

plt.xlabel("Predicted") 

plt.ylabel("Actual") 

plt.show() 

 

 

• VGG16.ipynb 
 

from tensorflow.keras.applications import VGG16 

 

vgg_mod = VGG16( 

    include_top = False, 

    weights = 'imagenet', 

    input_shape = (224, 224, 3) 

) 

 

vgg_mod 

 

vgg_mod.summary() 

 

from tensorflow.keras.models import Model 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import AveragePooling2D, Flatten, Dense, Dropout, Input 

 

for layer in vgg_mod.layers: 

  layer.trainable = False 

 

vgg_mod.output 

 

model = vgg_mod.output 

model = AveragePooling2D(pool_size=(4, 4))(model) 

model = Flatten(name="flatten")(model) 

model = Dense(60, activation="relu")(model) 

model = Dropout(0.5)(model) 

model = Dense(3, activation="softmax")(model) 

final_model = Model(inputs=vgg_mod.input, outputs=model) 

 

final_model 

 

# model = Sequential() 

# model.add(vgg_mod) 

# model.add(Flatten()) 

# model.add(Dense(60, activation='relu')) 

# model.add(Dropout(0.5)) 

# model.add(Dense(3, activation='softmax')) 

 

# model 

 

LR = 0.001 

EPOCH = 50 

BATCH_SIZE = 32 

IMG_SIZE = (224, 224) 

 

from tensorflow.keras.optimizers import Adam 



 

final_model.compile(loss='categorical_crossentropy', optimizer=Adam(learning_rate=LR, 

decay=LR/EPOCH), metrics=['accuracy']) 

 

from tensorflow.keras.preprocessing.image import ImageDataGenerator 

 

train_datagen = ImageDataGenerator( 

    rotation_range = 0.2, 

    shear_range = 0.2, 

    horizontal_flip = True, 

    rescale = 1.0/255, 

    validation_split = 0.2 

) 

 

train_datagen 

 

test_datagen = ImageDataGenerator( 

    rescale = 1.0/255 

) 

 

test_datagen 

 

from google.colab import drive 

drive.mount('/drive') 

 

train_directory = '/drive/MyDrive/Colab Notebooks/base_dir/train_dir' 

val_directory = '/drive/MyDrive/Colab Notebooks/base_dir/val_dir' 

 

train_generator = train_datagen.flow_from_directory( 

    train_directory, 

    target_size = IMG_SIZE, 

    class_mode = 'categorical', 

    batch_size = 32, 

) 

 

train_generator 

 

test_generator = test_datagen.flow_from_directory( 

    val_directory, 

    target_size = IMG_SIZE, 

    class_mode = 'categorical', 

    batch_size = 32, 

    shuffle = False 

) 

 

test_generator 

 

history = final_model.fit( 

            train_generator, 

            steps_per_epoch = train_generator.samples // BATCH_SIZE, 

            epochs = EPOCH, 

            validation_data = test_generator, 

            validation_steps = test_generator.samples // BATCH_SIZE, 

        ) 

 

import matplotlib.pyplot as plt 

 

# create history loss and accuracy function 

def plot_loss_acc(his): 



    train_loss = his.history['loss'] 

    val_loss = his.history['val_loss'] 

    acc = his.history['accuracy'] 

    val_acc = his.history['val_accuracy'] 

    epochs = range(len(train_loss)) 

     

    plt.figure(figsize=(20, 8)) 

     

    plt.subplot(121) 

    plt.plot(epochs, train_loss, color='b', label='Train') 

    plt.plot(epochs, val_loss, color='r', label='Validation') 

    plt.legend() 

    plt.title('Model Loss') 

     

    plt.subplot(122) 

    plt.plot(epochs, acc, color='b', label='Train') 

    plt.plot(epochs, val_acc, color='r', label='Validation') 

    plt.legend() 

    plt.title('Model Accuracy') 

     

    plt.show() 

 

plot_loss_acc(history) 

 

## Classification Confusion Matrix 

 

# predict classes of validation data 

val_predict = final_model.predict(test_generator) 

 

val_predict 

 

import numpy as np 

 

predict_class = np.argmax(val_predict, axis=1) 

predict_class = predict_class.tolist() 

 

predict_class 

 

from sklearn.metrics import confusion_matrix, classification_report 

 

labels = ['Covid', 'Normal', 'Viral Pneumonia'] 

report = classification_report(test_generator.classes, predict_class, target_names=labels) 

print(report) 

 

import pandas as pd 

 

cm = confusion_matrix(test_generator.classes, predict_class) 

cm_df = pd.DataFrame(cm, 

                     index = ['COVID','NORMAL','VIRAL PNEUMONIA'],  

                     columns = ['COVID','NORMAL','VIRAL PNEUMONIA']) 

 

import seaborn as sns  

 

plt.figure(figsize=(8,6)) 

sns.heatmap(cm_df, annot=True, fmt='d') 

plt.title("Confusion Matrix") 

plt.xlabel("Predicted") 

plt.ylabel("Actual") 

plt.show() 



• vgg19.ipynb 
 

from tensorflow.keras.applications import VGG19 

 

vgg_mod = VGG19( 

    include_top = False, 

    weights = 'imagenet', 

    input_shape = (224, 224, 3) 

) 

 

vgg_mod 

 

vgg_mod.summary() 

 

from tensorflow.keras.models import Model 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import AveragePooling2D, Flatten, Dense, Dropout, Input 

 

for layer in vgg_mod.layers: 

  layer.trainable = False 

 

vgg_mod.output 

 

model = vgg_mod.output 

model = AveragePooling2D(pool_size=(4, 4))(model) 

model = Flatten(name="flatten")(model) 

model = Dense(60, activation="relu")(model) 

model = Dropout(0.5)(model) 

model = Dense(3, activation="softmax")(model) 

final_model = Model(inputs=vgg_mod.input, outputs=model) 

 

final_model 

 

# model = Sequential() 

# model.add(vgg_mod) 

# model.add(Flatten()) 

# model.add(Dense(60, activation='relu')) 

# model.add(Dropout(0.5)) 

# model.add(Dense(3, activation='softmax')) 

 

# model 

 

LR = 0.001 

EPOCH = 50 

BATCH_SIZE = 32 

IMG_SIZE = (224, 224) 

 

from tensorflow.keras.optimizers import Adam 

 

final_model.compile(loss='categorical_crossentropy', optimizer=Adam(learning_rate=LR, 

decay=LR/EPOCH), metrics=['accuracy']) 

 

from tensorflow.keras.preprocessing.image import ImageDataGenerator 

 

train_datagen = ImageDataGenerator( 

    rotation_range = 0.2, 

    shear_range = 0.2, 

    horizontal_flip = True, 

    rescale = 1.0/255, 



    validation_split = 0.2 

) 

 

train_datagen 

 

test_datagen = ImageDataGenerator( 

    rescale = 1.0/255 

) 

 

test_datagen 

 

from google.colab import drive 

drive.mount('/drive') 

 

train_directory = '/drive/MyDrive/Colab Notebooks/base_dir/train_dir' 

val_directory = '/drive/MyDrive/Colab Notebooks/base_dir/val_dir' 

 

train_generator = train_datagen.flow_from_directory( 

    train_directory, 

    target_size = IMG_SIZE, 

    class_mode = 'categorical', 

    batch_size = 32, 

) 

 

train_generator 

 

test_generator = test_datagen.flow_from_directory( 

    val_directory, 

    target_size = IMG_SIZE, 

    class_mode = 'categorical', 

    batch_size = 32, 

    shuffle = False 

) 

 

test_generator 

 

history = final_model.fit( 

            train_generator, 

            steps_per_epoch = train_generator.samples // BATCH_SIZE, 

            epochs = EPOCH, 

            validation_data = test_generator, 

            validation_steps = test_generator.samples // BATCH_SIZE, 

        ) 

 

import matplotlib.pyplot as plt 

 

# create history loss and accuracy function 

def plot_loss_acc(his): 

    train_loss = his.history['loss'] 

    val_loss = his.history['val_loss'] 

    acc = his.history['accuracy'] 

    val_acc = his.history['val_accuracy'] 

    epochs = range(len(train_loss)) 

     

    plt.figure(figsize=(20, 8)) 

     

    plt.subplot(121) 

    plt.plot(epochs, train_loss, color='b', label='Train') 

    plt.plot(epochs, val_loss, color='r', label='Validation') 



    plt.legend() 

    plt.title('Model Loss') 

     

    plt.subplot(122) 

    plt.plot(epochs, acc, color='b', label='Train') 

    plt.plot(epochs, val_acc, color='r', label='Validation') 

    plt.legend() 

    plt.title('Model Accuracy') 

     

    plt.show() 

 

plot_loss_acc(history) 

 

## Classification Confusion Matrix 

 

# predict classes of validation data 

val_predict = final_model.predict(test_generator) 

 

val_predict 

 

import numpy as np 

 

predict_class = np.argmax(val_predict, axis=1) 

predict_class = predict_class.tolist() 

 

predict_class 

 

from sklearn.metrics import confusion_matrix, classification_report 

 

labels = ['Covid', 'Normal', 'Viral Pneumonia'] 

report = classification_report(test_generator.classes, predict_class, target_names=labels) 

print(report) 

 

import pandas as pd 

 

cm = confusion_matrix(test_generator.classes, predict_class) 

cm_df = pd.DataFrame(cm, 

                     index = ['COVID','NORMAL','VIRAL PNEUMONIA'],  

                     columns = ['COVID','NORMAL','VIRAL PNEUMONIA']) 

 

import seaborn as sns  

 

plt.figure(figsize=(8,6)) 

sns.heatmap(cm_df, annot=True, fmt='d') 

plt.title("Confusion Matrix") 

plt.xlabel("Predicted") 

plt.ylabel("Actual") 

plt.show() 

 

• Covid_Detection.ipynb 
 

## Import Libraries 

 

import os 

import shutil 

 

import numpy as np 

import pandas as pd 

import seaborn as sns 



import matplotlib.pyplot as plt 

 

from sklearn.utils import shuffle 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import confusion_matrix, classification_report 

 

from tensorflow.keras.preprocessing.image import ImageDataGenerator 

from tensorflow.keras.layers import Input, BatchNormalization, Conv2D, MaxPooling2D, 

AveragePooling2D, Dropout, Flatten, Dense 

from tensorflow.keras.optimizers import Adam 

from tensorflow.keras.losses import CategoricalCrossentropy 

from tensorflow.keras.callbacks import EarlyStopping 

from tensorflow.keras.models import Sequential, Model 

 

from google.colab import drive 

drive.mount('/drive') 

 

## Check images into folders 

 

print(len(os.listdir('/drive/My Drive/Colab Notebooks/base_dir/train_dir/covid'))) 

print(len(os.listdir('/drive/My Drive/Colab Notebooks/base_dir/train_dir/normal'))) 

print(len(os.listdir('/drive/My Drive/Colab Notebooks/base_dir/train_dir/viral pneumonia'))) 

 

print(len(os.listdir('/drive/My Drive/Colab Notebooks/base_dir/val_dir/covid'))) 

print(len(os.listdir('/drive/My Drive/Colab Notebooks/base_dir/val_dir/normal'))) 

print(len(os.listdir('/drive/My Drive/Colab Notebooks/base_dir/val_dir/viral pneumonia'))) 

 

## Image Classification¶ 

 

BATCH_SIZE = 32 

IMG_SIZE = (256, 256) 

LR = 0.001 

EPOCH = 50 

 

train_directory = '/drive/My Drive/Colab Notebooks/base_dir/train_dir' 

val_directory = '/drive/My Drive/Colab Notebooks/base_dir/val_dir' 

 

## Generate Train/Val Dataset 

 

train_datagen = ImageDataGenerator( 

    rotation_range = 0.2, 

    shear_range = 0.2, 

    horizontal_flip = True, 

    rescale = 1.0/255 

) 

train_datagen 

 

test_datagen = ImageDataGenerator( 

    rescale = 1.0/255 

) 

test_datagen 

 

train_generator = train_datagen.flow_from_directory( 

    train_directory, 

    target_size = IMG_SIZE, 

    color_mode = 'grayscale', 

    class_mode = 'categorical', 

    batch_size = 32 

) 



train_generator 

 

test_generator = test_datagen.flow_from_directory( 

    val_directory, 

    target_size = IMG_SIZE, 

    color_mode = 'grayscale', 

    class_mode = 'categorical', 

    batch_size = 32, 

    shuffle = False 

) 

test_generator 

 

train_generator.class_indices 

 

## Model Fitting 

 

 

def covid_model(): 

    input_shape = IMG_SIZE + (1,) 

    model = Sequential([ 

        Conv2D(32, (3, 3), padding='same', activation='relu', input_shape=input_shape), 

        MaxPooling2D(pool_size=(2, 2)), 

        Conv2D(32, (3, 3), padding='same', activation='relu'), 

        MaxPooling2D(pool_size=(2, 2)), 

        Conv2D(64, (3, 3), padding='same', activation='relu'), 

        MaxPooling2D(pool_size=(2, 2)), 

        Conv2D(64, (3, 3), padding='same', activation='relu'), 

        MaxPooling2D(pool_size=(2, 2)), 

        Conv2D(128, (3, 3), padding='same', activation='relu'), 

        MaxPooling2D(pool_size=(2, 2)), 

        Conv2D(128, (3, 3), padding='same', activation='relu'), 

        MaxPooling2D(pool_size=(2, 2)), 

        Conv2D(128, (3, 3), padding='same', activation='relu'), 

        MaxPooling2D(pool_size=(2, 2)), 

        Conv2D(256, (3, 3), padding='same', activation='relu'), 

        MaxPooling2D(pool_size=(2, 2)), 

         

        Flatten(), 

         

        Dense(units=128, activation='relu'), 

        Dense(units=64, activation='relu'), 

        Dense(units=32, activation='relu'), 

        Dense(units=16, activation='relu'), 

        Dense(units=3, activation='softmax') 

    ]) 

     

    return model 

 

model = covid_model() 

model 

 

model.summary() 

 

pip install pydot-ng 

 

pip install graphviz 

 

from keras.utils.vis_utils import plot_model 

 



model.compile( 

    optimizer = Adam(learning_rate=LR), 

    loss = CategoricalCrossentropy(), 

    metrics = ['accuracy'] 

) 

 

plot_model(model, to_file='model_plot.png', show_shapes=True, show_layer_names=True) 

 

early_stopping = EarlyStopping(monitor='val_loss', patience=3, restore_best_weights=True) 

early_stopping 

 

history = model.fit(train_generator, epochs=EPOCH, callbacks=[early_stopping], 

validation_data=test_generator) 

# history = model1.fit(train_generator, epochs=EPOCH, validation_data=test_generator) 

history 

 

## Model Evaluation 

 

# Evaluate the model by getting its final loss and accuracy 

model.evaluate(test_generator) 

 

history.history 

 

# create history loss and accuracy function 

def plot_loss_acc(his): 

    train_loss = his.history['loss'] 

    val_loss = his.history['val_loss'] 

    acc = his.history['accuracy'] 

    val_acc = his.history['val_accuracy'] 

    epochs = range(len(train_loss)) 

     

    plt.figure(figsize=(20, 8)) 

     

    plt.subplot(121) 

    plt.plot(epochs, train_loss, color='b', label='Train') 

    plt.plot(epochs, val_loss, color='r', label='Validation') 

    plt.legend() 

    plt.title('Model Loss') 

    plt.savefig('Loss') 

     

    plt.subplot(122) 

    plt.plot(epochs, acc, color='b', label='Train') 

    plt.plot(epochs, val_acc, color='r', label='Validation') 

    plt.legend() 

    plt.title('Model Accuracy') 

    plt.savefig('Accuracy') 

     

    plt.show() 

 

plot_loss_acc(history) 

 

## Classification Confusion Matrix 

 

# predict classes of validation data 

val_predict = model.predict(test_generator) 

 

val_predict 

 

predict_class = np.argmax(val_predict, axis=1) 



predict_class = predict_class.tolist() 

 

predict_class 

 

labels = ['Covid', 'Normal', 'Viral Pneumonia'] 

report = classification_report(test_generator.classes, predict_class, target_names=labels) 

print(report) 

 

cm = confusion_matrix(test_generator.classes, predict_class) 

cm_df = pd.DataFrame(cm, 

                     index = ['COVID','NORMAL','VIRAL PNEUMONIA'],  

                     columns = ['COVID','NORMAL','VIRAL PNEUMONIA']) 

 

plt.figure(figsize=(8,6)) 

sns.heatmap(cm_df, annot=True, fmt='d') 

plt.title("Confusion Matrix") 

plt.xlabel("Predicted") 

plt.ylabel("Actual") 

plt.show() 
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PROBLEM DESCRIPTION 

 
Steganalysis has now become an important topic in the field of information security where media files 

undergo frequent alteration, to hide the existence of a message from a third party. Knowledge of 

steganography is of increasing importance to individuals in the law enforcement, intelligence and 

military. Steganalysis is the study of analysing images in order to discover methods of detecting hidden 

messages and data within the media files, or to ensure a file has undergone steganography or not. 

Since image files have been more prone to steganography for decades for ease of access, storage, 

communicate, share and decipher; scientists and researchers are always into finding a more trustful 

blind image steganalysis approach which can fit and detect almost all possible image steganography 

approaches on target images. The goal in this paper has been divided into two parts: 

In part 1 we try to find an ideal steganalysis approach to detect the presence of steganography 

in a grayscale image file which has undergone a LSB steganography. LSB or Least Significant Bit 

steganography hides messages inside an image by replacing the least significant bits of an image with 

the bits of the message to be hidden. Through our method we have tried to train a neural network 

classifier with the fundamental characteristics (features include Haralick [1] Texture features and 

Principal Component Analysis [2] features which were calculated from Gray-level Co-occurrence 

Matrix of the image) of some cover images and that of LSB steganographed images, and finally classify 

an test image as cover or stego.  

In part 2 we try to improve our method by expanding our domain to a broader aspect and try 

to detect steganography in images irrespective of the embedding algorithm used with the help of 

Convolutional Neural Networks. For better training of the network we have made use of powerful 

steganographic algorithms like WOW, S-UNIWARD, HUGO in preparation of dataset. By this approach 

we do not need to extract features of images by Haralick or Principal Component Analysis but the CNN 

will learn by itself through huge training datasets. 

Throughout our approach we have tried to keep the method robust, dedicated to work 

irrespective of standard or non-standard datasets and tried to maintain a decent accuracy percentage 

of detection between cover and stego-images so that it copes up with other present image 

steganalysis methods in industry. 

 
 

 

 

 

 

 



CHAPTER 1: A DEEP LEARNING BASED BLIND IMAGE STEGANALYSIS 

TECHNIQUE USING PCA AND HARALICK FEATURES FROM GRAY 

LEVEL CO-OCCURRENCE MATRIX 

 

CHAPTER 1.1: INTRODUCTION 

 

1.1.1 STEGANOGRAPHY 

Steganography is the practice of concealing a message within another message or a physical object. 
In computing/electronic contexts, a computer file, message, image, or video is concealed within 
another file, message, image, or video so that it is not visible to unauthorized users. The 
word steganography comes from Greek steganographia, which combines the words steganós, 
meaning "covered or concealed", and -graphia meaning "writing". 

The first recorded use of the term was in 1499 by Johannes Trithemius in his Steganographia, a 
treatise on cryptography and steganography, disguised as a book on magic. Generally, the hidden 
messages appear to be (or to be part of) something else: images, articles, shopping lists, or some other 
cover text. For example, the hidden message may be in invisible ink between the visible lines of a 
private letter. Some implementations of steganography that lack a shared secret are forms of security 
through obscurity, and key-dependent steganographic schemes adhere to Kerckhoffs's [3] principle.  

The advantage of steganography over cryptography alone is that the intended secret message does 
not attract attention to itself as an object of scrutiny. Plainly visible encrypted messages, no matter 
how unbreakable they are, arouse interest and may in themselves be incriminating in countries in 
which encryption is illegal.  

Whereas cryptography is the practice of protecting the contents of a message alone, steganography 
is concerned with concealing the fact that a secret message is being sent and its contents. 

A Steganography system made up of three components: cover-object means which hides the secret 
message, the secret message and the stegoobject means which is the cover object with message 
embedded inside it.Steganography includes the concealment of information within computer files. In 
digital steganography, electronic communications may include steganographic coding inside of a 
transport layer, such as a document file, image file, program, or protocol. Media files are ideal for 
steganographic transmission because of their large size. For example, a sender might start with an 
innocuous image file and adjust the color of every hundredth pixel to correspond to a letter in the 
alphabet. The change is so subtle that someone who is not specifically looking for it is unlikely to notice 
the change. 

1.1.1.1 Steganography in Digital Mediums [4] 

There are many Steganography techniques depending on the type of the cover object which are 
followed in order to obtain the security.  

a.Text Steganography: The techniques in text steganography are number of tabs, white spaces, capital 
letters, just like Morse code is used to achieve information hiding.  

b. Image Steganography: Taking the cover object as image in steganography is called image 
steganography. In this technique pixel intensities are used to hide the information. The 8 bit and 24 
bit images are common. The image size is large then hides the more information. Larger images may 

https://en.wikipedia.org/wiki/Computer_file
https://en.wikipedia.org/wiki/Greek_language
https://en.wikipedia.org/wiki/Johannes_Trithemius
https://en.wikipedia.org/wiki/Steganographia
https://en.wikipedia.org/wiki/Cryptography
https://en.wikipedia.org/wiki/Invisible_ink
https://en.wikipedia.org/wiki/Shared_secret
https://en.wikipedia.org/wiki/Security_through_obscurity
https://en.wikipedia.org/wiki/Security_through_obscurity
https://en.wikipedia.org/wiki/Kerckhoffs%27s_principle
https://en.wikipedia.org/wiki/Cryptography
https://en.wikipedia.org/wiki/Encrypted
https://en.wikipedia.org/wiki/Encryption
https://en.wikipedia.org/wiki/Pixel


require compression to avoid detection and the Techniques are LSB insertion and Masking and 
filtering. 

c. Network Steganography: Taking cover objects as network protocol i.e. TCP, UDP, IP etc, where 
protocol is used as carrier is called network protocol steganography. In the OSI model there exist the 
channels where steganography can be achieved in unused header bits of TCP/IP fields  

d. Audio Steganography: Taking audio as carrier for information hiding is called audio steganography. 
It is very important medium due to voice over IP (VOIP) popularity. It is used for digital audio formats 
such as WAVE, MIDI, and AVI MPEG for steganography. The methods are LSB coding, echo hiding, 
parity coding etc.  

e. Video Steganography: It is a technique to hide any type of files or information into digital video 
format. Video i.e. the combination of pictures is used as carrier for hidden information. The discrete 
cosine transform i.e. DCT change the values e.g., 8.667 to 9 which is used to hide the information in 
each of the images in the video, which is not justified by the human eye. It is used such as H.264, Mp4, 
MPEG, AVI or other video formats. 

1.1.1.2 Techniques of Steganography  

a. Spatial Domain Methods: spatial domain Steganography technique refers to methods in which data 
hiding is performed directly on the pixel value of cover image in such a way that the effect of message 
is not visible on the cover image. The spatial domain methods are classified as following:  

1. LSB: LSB is one the technique of spatial domain methods. LSB is the simple but susceptible to lossy 
compression and image manipulations. Some bits are change directly in the image pixel values in 
hiding the data. Changes in the value of the LSB are imperceptible for human eyes. LSB technique 
there is less chance for degradation of the original image, more information can be stored in an image 
and covert communication of sensitive data. 

2. Pixel Value Differencing: To embedding the data in PVD the two consecutive pixels are selected. 
Whether the pixels are determined from smooth area or an edge area. Payload is determined by 
calculating the difference between two regular pixels.  

3. BPC: The Binary Pattern complexity approach is used to measure the noise factor in the image 
complexity. The noisy portion is replaced by binary Pattern and it is mapped from the secret data. The 
image will remain same when the reverse noise factor will be determined.  

b. Transform Domain Steganography: It is a more complex way to hides the information in an image. 
The different algorithms and transformations are used to hide information in the images. In the 
frequency domain, the process of embedding data of a signal is much stronger than embedding 
principles that operate in the time domain. The transform domain techniques over the MATEC Web 
of Conferences DOI: 10.1051/ 57, 02003 (2016) matec 57 conf/2016 0 ICAET 2016 - 2003 3 spatial 
domain techniques are to hide the information in the images that are less exposed to compression, 
image processing and cropping. Some transform domain techniques are not depending on the image 
format and they run the lossless and lossy format conversions. Transform domain techniques are 
classified into various categories such as Discrete Fourier transformation (DFT), discrete cosine 
transformation (DCT), Discrete Wavelet transformation (DWT)  

1. The Discrete Fourier Transform (DFT): Discrete Fourier transform is the transform that are purely 
discrete: discrete-time signals are converted into discrete number of frequencies. DFT converts a finite 
list of equally spaced samples of a function into the list of coefficients of a finite combination of 
complex sinusoids ordered by their frequencies. It can be said to convert the sampled function from 
its original domain often time or position along a line to the frequency domain. The Discrete Time 
Fourier transforms uses the discrete time but it converts into the continuous frequency. The algorithm 
for computing the DFT is very fast on modern computers. This algorithm is known as Fast Fourier 



Transform i.e. FFT and it produces the same result as of the DFT by using the Inverse Discrete Fourier 
Transform.  

2. The Discrete Cosine Transform (DCT): This method is similar to the Discrete Fourier Transform. DCT 
transform the signal or image from spatial domain to the frequency domain. The mathematical 
transforms convert the pixels in such a way as to give the effect of “spreading” the location of the 
pixel values over part of the image. The DCT is used in steganography as the Image is broken into 8×8 
pixel blocks and transforms these pixel blocks into 64 DCT. Working from left to right, up to down, the 
DCT is applied to each block. Through quantization table each block is compressed to scale the DCT 
coefficients and message is embedded in DCT coefficients. The array of compressed blocks that 
constitute the image is stored in drastically reduced the amount of space. When desired, image is 
reconstructed through decompression, a process that uses the Inverse discrete cosine transform i.e. 
IDCT.  

3. Discrete Wavelet Transform (DWT): It is used to transform the image from a spatial domain to the 
frequency domain. In the process of steganography DWT identifies the high frequency and low 
frequency information of each pixel of the image. It is mathematical tool for decomposing an image 
hierarchically. It is mainly used for processing of non-stationary signals. The wavelet transform is based 
on small waves, Known as wavelets, of different frequency and limited duration. It provides both 
frequency and spatial description of the image. Wavelets are created by translations and dilations of 
a fixed function are known as mother wavelet. DWT performs in one dimension and in the two-
dimensional plane. The DWT is the accurate model than the DFT or the DCT and it is multi resolution 
description of the image. The current image compression standard JPEG 2000 is based on the wavelet 
transforms.  

c. Vector Embedding: A vector embedding method that uses robust algorithm with codec standard 
(MPEG-1 and MPEG -2).This method embeds audio information to pixels of frames in host video. It is 
based on the H.264/AVC Video coding standard. The algorithm designed a motion vector component 
feature to control embedding, and also to be the secret carrier. The information embedded will not 
significantly affect the video sequence's visual invisibility and statistical invisibility. The algorithm has 
a large embedding capacity with high carrier utilization, and can be implementing fast and effectively.  

d. Spread spectrum: The concept of spread spectrum is used in this technique. In this method the 
secret data is spread over a wide frequency bandwidth. The ratio of signal to noise in every frequency 
band must be so small that it becomes difficult to detect the presence of data. Even if parts of data 
are removed from several bands, there would be still enough information is present in other bands to 
recover the data. Thus it is difficult to remove the data completely without entirely destroying the 
cover.It is a very robust approach used in military communication.  

e. Statistical Technique: In the technique message is embedded by changing several properties of the 
cover. It involves the splitting of cover into blocks and then embedding one message bit in each block. 
The cover block is modified only when the size of message bit is one otherwise no modification is 
required.  

f. Distortion Techniques: The distortion method is used to store the secret data by distorting the signal. 
An encoder applies a sequence of modifications to the cover image and the decoder phase decodes 
the encrypted data MATEC Web of Conferences DOI: 10.1051/ 57, 02003 (2016) matec 57 conf/2016 
0 ICAET 2016 - 2003 4 to the original data with the secret data by using some secret key.  

g. Masking and Filtering: This approach is used to hides the data by marking an image. This approach 
is valuable where watermarks become a portion of the image. The data will be embedded where the 
more significant part of the image rather than hiding it into the noisy portion. The watermarking 
techniques are more integrated into the image and it can be applied without the fear of destruction 
of the image. This technique is used in 24 bit and grey scale images. 

 



1.1.1.3 Factors Include in Steganography  

The effectiveness of steganography technique can be determined by comparing cover-image with the 

stego Image. The various factors are:  

a. Robustness: Robustness refers to the ability of embedded data to remain intact if the stego- image 

undergoes transformations, such as linear and non-linear filtering, sharpening or blurring, addition of 

random noise, rotations and scaling, cropping or decimation, lossy compression.  

b. Imperceptibility: The imperceptibility means invisibility of a steganography algorithm. Because it is 

the first and foremost requirement, since the strength of steganography lies in its ability to be 

unnoticed by the human eye.  

c. Bit Error Rate: The hidden information can be successfully recovered from the communication 

channel. It must be ideal but for the real communication channel, the error comes while retrieving 

hidden information and this is measured by BER. It is the ratio of the number of errors to the total no 

of bits sent in an image.  

d. Mean Square Error: It is computed by performing byte by byte comparisons of the two images. The 

representation of pixel with 8 bits and the representation of grey level images upto 256 levels. The 

distortion in the image can be measured using MSE. Let I be the cover image, K be the stego image 

and m*n be the total number of pixels.  

e. Peak Signal to Noise Ratio: The image steganography system must embed the content of hidden 

information in the image so that the quality of the image should not change. PSNR is commonly used 

to measure the quality of reconstruction of lossy compression techniques Larger the PSNR value 

indicates the better quality of image i.e. less distortion. PSNR is the ratio of the maximum signal to 

noise in the stego image. 

 

1.1.2 STEGANALYSIS 

Steganalysis is the study of detecting messages hidden using steganography; this is analogous 
to cryptanalysis applied to cryptography. The goal of steganalysis is to identify suspected packages, 
determine whether or not they have a payload encoded into them, and, if possible, recover that 
payload. 

Unlike cryptanalysis, in which intercepted data contains a message (though that message 
is encrypted), steganalysis generally starts with a pile of suspect data files, but little information about 
which of the files, if any, contain a payload. This process can be categorized by different types such as 
Statistical steganalysis which contains spatial domain. Transform domain and Feature based 
steganalysis. The Statistical steganalysis helps to detect the existence of the hidden message, 
statistical analysis is done with the pixels and it is further classified as spatial domain steganalysis and 
transforms domain steganalysis. In spatial domain, the pair of pixels is considered and the difference 
between them is calculated. The pair may be any two neighbouring pixels. They may be selected within 
a block otherwise across the two blocks. Finally, the histogram is plotted that shows the existence of 
the hidden message. In transform domain, frequency counts of co-efficients are calculated and then 
histogram analysis will be performed at the time of steganalysis. With the help of this, the cover and 
stego images can be differentiated. However, this method is not providing information about the 
embedding algorithms. To overcome this problem, we may choose feature based steganalysis. In the 



Feature based steganalysis approach, the features of the given image will be obtained for selecting 
and retaining relevant information from the cover image. These extracted features are used to detect 
hidden message in an image. They can also be used to train classifiers. 

1.1.2.1 Classification of Steganalysis [5]  

There are certain types of algorithms available in the literature to perform classification; the 
classification is a supervised process where it needs a prior training to classify the data into normal or 
stego data. The steganalysis algorithm may or may not depend on the steganographic algorithm (SA). 
Based on this, steganalysis is classified as Specific and generic algorithms. Few algorithms depend on 
the steganographic algorithms and few not.  

a. Specific / Target steganalysis: The SA is known and the designing of detector (steganalysis algorithm) 
is based on SA. The steganalysis algorithm is dependent on the SA. This type of steganalysis is based 
on analyzing the statistical properties of an image that change after embedding. The advantage of 
using specific steganalysis is the results are very accurate. The specific or target steganalysis are very 
limited to particular embedding algorithm. So it is not fully applicable for all types of algorithms. And 
it also not supports all image formats.  

b. Generic / Blind / Universal steganalysis: In universal method, the steganalysis algorithm is not 
recognized by all. Therefore, anyone can design a detector to detect the presence of the secret 
message that will not depend on steganalysis algorithms. Comparing with specific steganalysis, 
universal is common and less efficient. Still universal steganalysis is widely used than specific one 
because it is independent of the SA. This research focuses on universal steganalysis. It includes the 
following 2 phases like feature extraction from the data and classifying them into two distinct groups.  

1. Feature Extraction: It is a process of creating a set of distinct statistical attributes of an image. These 
attributes are known as feature. Feature Extraction is nothing but a dimensionality reduction. The 
extracted features must be sensitive to the embedding objects and the Image quality metrics and also 
wavelet decompositions, moment of image statistic histograms, Markov empirical transition matrix, 
moment of image statistic from spatial and frequency domain, cooccurrence matrix are some of the 
feature extraction methods.  

2. Classification: It is a way of categorizing the images into classes depending on their feature values. 
Supervised learning is one of the primary classifications in steganalysis. Supervised learning allows 
learning under some supervision. In this learning, a set of training inputs that includes input features 
is given as input to train the classifier. After the training, class label is predicted based on the features 
that are given. Steganalysis use the following classifiers:  

a. Multivariate regression: It consists of regression co-efficient. In the training phase, regression 
coefficients are predicted using minimum mean square error. This algorithm is effective when the 
training samples are valid and huge.  

b. Fisher linear discriminant (FLD): It is a linear combination of features which maximizes the 
separations. In the classification method, multi dimensional features are projected into a linear space. 
Using this algorithm, the feature extraction and matching will be performed effectively, because it 
uses the linear method at the time of feature extraction and content extraction.  

c. Support Vector Machine (SVM): Support Vector Machine is a popular supervised learning process 
algorithm, which learns from the given sample i.e. training dataset. This algorithm is trained to 
recognize and assign class labels based on a given set of features and objects. In general, SVM creates 
a hyper plane selection problem and may arise outliers.  

d. Artificial neural network (ANN): It is defined as an information processing model that simulates 
biological neuron approaches and it includes several steps to classify the data. Feed forward and back 
propagation neural networks are commonly used in classification. The classification process has 2 
steps, training and testing. In a training phase, the neural network associates the outputs with the 



given input patterns, by modifying the weights of inputs. In a testing phase, the input pattern is 
identified and the associated output is determined. This thesis uses ANN classifier for detecting the 
presence of hidden information.  

1.1.2.2 Steganalysis tools  

Steganalysis usually consist several processes like cropping, blurring, image resizing, noise removal 
and compression process. Various steganalysis tools are available to detect the presence of hidden 
information with the stego image. And few tools only provide the above process. Some of the 
steganalysis tools are mentioned below: 

a. StegDetect: This software is an automated tool for detecting steganographic content in images. It 
is capable of detecting several different steganographic methods to embed hidden information in JPEG 
images. This software will run on the linux platform. Currently, the detectable schemes are jsteg, 
jphide, invisible secrets; OutGuess 01.3b, F5, appendX, and camouflage. Using linear discriminant 
analysis, it also supports detection of new stego systems. The main drawback of this software is it 
works only for JPEG images. Currently, there is no support for parameter training. The only exported 
knob is the sensitivity level. Future versions will export all detection parameters via a configuration 
file.  

b. JPSeek: It is a program that allows detecting the hidden massage inside a jpeg image. There are 
various versions of similar programs available on the internet but JPSeek is rather special. The design 
objective is same as JPHide.  

c. StegSecret: StegSecret software aim is to gather, to implement and to make easier the usage of 
steganalysis techniques, especially in digital media such as images, audio and video. This software 
warns about the insecurity of several steganographic tools and steganographic algorithms available in 
Internet. It is a steganalysis open source project that makes possible the detection of hidden 
information in different digital media. StegSecret is java-based multiplatform steganalysis tool that 
allows the detection of hidden information by using the most known steganographic methods. It 
detects EOF, LSB, and DCT like techniques.  

d. StegBreak: It launches brute-force dictionary attacks on JPG image. The StegBreak states a brute-
force dictionary attack against the specified JPG images. And while comparing with the other tools, 
this is effectively work on JPG image formats.  

e. Other steganalysis tools: Some more image steganalysis tools are 2Mosaic, StirMark Benchmark, 
Phototile, StegSpy, Stego Suite, Steganalysis Analyzer Real-Time Scanner, JSteg detection, JPHide 
detection, OutGuess detection. 

1.1.2.3 Applications of Steganalysis  

a. Medical safety: Current image formats such as Digital Imaging and Communications in Medicine 
separate image data from the text like such as patients name, date and physician details along with 
the result that the link between image and patient occasionally gets mangled by protocol converters. 
Thus embedding the patient's name in the image could be a useful safety measure [5].  

b. Terrorism: According to government officials terrorists use to hide maps and photographs of 
terrorist targets and giving instructions for terrorist targets.  

c. Hacking: The hacker hides a monitoring tool, server behind any image or audio or text file and shares 
it with mail or chat which will get installed and executed which will help the hacker to do anything 
with the workstation. 

 

 

 



1.1.3 CO-OCCURRENCE MATRIX 

A co-occurrence matrix or co-occurrence distribution (also referred to as : gray-level co-occurrence 
matrices GLCMs) is a matrix that is defined over an image to be the distribution of co-occurring pixel 
values (grayscale values, or colors) at a given offset. It is used as an approach to texture analysis with 
various applications especially in medical image analysis. Co-occurrence matrices are also referred to 
as GLCMs (gray-level co-occurrence matrices, GLCHs (gray-level co-occurrence histograms) or spatial 
dependence matrices. 

Haralicket [1] al. originally proposed GLCM as a texture analysis method in 1979 for satellite image 

analysis. If M is a gray level image then, co-occurrence matrix C of M, calculates the number of times 

a pixel pair with an offset (∆𝑥, ∆𝑦) occurs in the image. Here ∆𝑥 𝑖𝑠 𝑡ℎ𝑒 difference in vertical pixel 

position and ∆𝑦 =Difference in horizontal pixel positions of the pair .So an offset of (0,1) means two 

horizontally adjacent pixel pair whereas offset=(1,0) means two vertically adjacent pixel pair. If the 

number of gray levels in the image M is G, then the size of C is G x G. So for an 8 bit grayscale image 

the GLCM has size 256x256. If the image size is 𝑚𝑥𝑛 then, for a pair of intensity levels (i,j), GLCM of M 

at offset (∆𝑥, ∆𝑦) is defined as, 

𝐶∆𝑥,∆𝑦(𝑖, 𝑗) = ∑ ∑ {
1  𝑖𝑓 𝑀(𝑥, 𝑦) = 𝑖 𝑎𝑛𝑑 𝑀(𝑥 + ∆𝑥, 𝑦 + ∆𝑦) = 𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
𝑛
𝑦=1

𝑚
𝑥=1  (1) 

Offset (∆𝑥, ∆𝑦) can also be represented in terms of(𝑑, 𝜃) where d= relative distance (number of pixels) 

between pixel pairs and 𝜃 = Relative angle (e.g. 0, 45, 90, 135 etc.) between them. For example a 

grayscale 2-bit image with intensity values {0,1,2,3} has the co-occurrence matrix as depicted in Figure-

1. 

0 0 1 1 

0 0 1 1 

0 2 2 2 

2 2 3 3 

       (a)     (b)                                 (c)                          (d)                           (e) 

Figure 1: a) 2-bit grayscale image b) GLCM for 00 (horizontal) c) GLCM for 900 (vertical)d) GLCM for 

1350 (Right down) (e) GLCM for 450(Left down). These matrices can be used to extract many relevant 

features to design a model for blind steganalysis [9]. 

1.1.3.1 Applications  

1. Whether considering the intensity or grayscale values of the image or various dimensions of color, 

the co-occurrence matrix can measure the texture of the image. Because co-occurrence matrices are 

typically large and sparse, various metrics of the matrix are often taken to get a more useful set of 

features. Features generated using this technique are usually called Haralick features, after Robert 

Haralick. Texture analysis is often concerned with detecting aspects of an image that are rotationally 

invariant. To approximate this, the co-occurrence matrices corresponding to the same relation, but 

rotated at various regular angles (e.g. 0, 45, 90, and 135 degrees), are often calculated and summed. 

Texture measures like the co-occurrence matrix, wavelet transforms, and model fitting have found 

application in medical image analysis in particular.  

2. Co-occurrence matrices are also used for words processing in natural language processing (NLP). 
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1.1.4 PRINCIPAL COMPONENT ANALYSIS 

Principal Component Analysis [2] is used as dimensionality reduction technique. It generates 
a set of new reduced variables and retains original information in these variables. Let x1,…xm 
be m vectors in Rd, the dimensionality is reduced using linear transformation. A matrix W ∈ 
Rn,d, where n<d induces a mapping xWx where Wx ∈ Rn is the lower dimensionality 
representation of x. Also a second matrix U ∈ Rd,n is used to recover each original vector x 
from its compressed version. That is, for a compressed vector y = Wx, where y is in the low 
dimensional space Rn, we can construct xT = Uy, so that x is the recovered version of x and 
resides in the original high dimensional space Rd. 
 

In PCA, we find the compression matrix W and the recovering matrix U so that the total 
squared distance between the original and recovered vectors is minimal. 
 
One such method of finding these matrices is SVD(Singular Value Decomposition)[]. Let there 
be n observations in an experiment and each observations have m data points and 
represented in the form a matrix M of order nXm. Matrix product of this M  and MT is 
calculated. The order of the resultant matrix is nXn. Eigen vectors is calculated for the matrix 
MMT. The number of eigen vectors is equal to n. This n eigen vectors each having n elements 
is the PCA matrix where the dimensionality is reduced from m to n. 
 
In the PCA matrix the columns which appear earlier tends to store more information and the 
later columns in the matrix tends to hold less information. 
 
 
1.1.5 HARALICK TEXTURE FEATURES 
 
Haralick [1] texture features are common texture descriptors in image analysis. To compute 
the Haralick features, the image gray-levels are reduced, a process called quantization. The 
resulting features depend heavily on the quantization step, so Haralick features are not 
reproducible unless the same quantization is performed. The aim of this work was to develop 
Haralick features that are invariant to the number of quantization gray-levels. By redefining 
the gray-level co-occurrence matrix (GLCM) as a discretized probability density function, it 
becomes asymptotically invariant to the quantization. The invariant and original features 
were compared using logistic regression classification to separate two classes based on the 
texture features. Classifiers trained on the invariant features showed higher accuracies, and 
had similar performance when training and test images had very different quantizations. In 
conclusion, using the invariant Haralick features, an image pattern will give the same texture 
feature values independent of image quantization.  
 
Calculation of common Haralick features are based on the formulae from : 

Uniformity or energy                      = ∑ 𝑝𝑖,𝑗
2

n

𝑖,𝑗=0
   (1) 

Entropy                                             = ∑ 𝑝i,j ∗ log (𝑝i,j)
𝑛

𝑖,𝑗
  (2) 

Maximum Probability                     = 𝑚𝑎𝑥𝑖,𝑗   𝑝𝑖,𝑗   (3) 



Contrast                                            = ∑ |i − j|l ∗ 𝑝i,j
k

𝑛

𝑖,𝑗
  (4) 

Inverse difference moment           = ∑
𝑝𝑖,𝑗

|i−j|l

𝑛

𝑖,𝑗=0
𝑖≠𝑗

   (5) 

Correlation       =    ∑
(i−u)(j−u)𝑝𝑖,𝑗

σ2

𝑛

𝑖,𝑗
   (6) 

Probability of a run of  length      =
(𝑃𝑖−𝑝𝑖,𝑖)2𝑝𝑖,𝑖

𝑛−1

𝑃𝑖
𝑛 , 𝑤ℎ𝑒𝑟𝑒 𝑃𝑖 = ∑ 𝑝𝑖,𝑗

𝑛

𝑗
   (7) 

n for a  graytone i (Assuming  
the image is Markov) 

 
This calculation gives statistical information for the GLCM.                      

 

 

CHAPTER 1.2: RELATED WORK & MOTIVATION 

 

1.2.1 RELATED WORK   

Kekre, H. B.et al. [6]  proposes a method for detection of LSB steganography using 24bit color images 

using a ratio (R) of close color pair with respect unique color in an image. If repeated LSB embedding 

is applied on an image the change in R is highest for first embedding and reduces for successive LSB 

embedding. If the image is Stego then R=R’ and if the image is cover then R’≥R. A percentage change 

(m) in R is calculated as m=((R-R’)*100)/R. A variable threshold schemes is calculated using Structural 

Similarity Index Measure (SSIM). A threshold (t) is calculated as t=m/SSIM. The threshold (t) is varied 

by (t-1e05t, t-1e06t, t-1e07t, t-1e08t, t-1e09t, t+1e05t, t+1e06t, t+1e07t, t+1e08t, t+1e09t). If m<t 

then image is categorized as stego image otherwise cover image. 180 BMP images of resolution 

128X128 is used.Stego versions of the cover images is taken by 25%,45%,50%,90% LSB payload and 

Stego images are further adulterated by 25% to 50%, 45% to 50%, 50% to 100%, 90% to 100% LSB 

payload. 83% accuracy is reported. 

Athawale A.A. et al [7] proposed a GLCM based LSB steganalysis technique for grayscale and color 

images. Average GLCM for different orientation of {0, 45, 90,135} degree are created. GLCM of clean 

image is diagonally symmetrically concentrated but losses this symmetry after LSB embedding. 31 

different features are generated taking five central diagonals. Features are stored in the database. 

Now for a test image this features are generated and compared using Euclidean and Manhattan 

distance for a match with threshold (100, 150, 200, 250). Experimental results were noted after using 

different embedding concentration (i.e. 25%, 40%, 50%, 90%, 100%) for both grayscale and color 

images.Detection accuracy in case of color images is better than that of grayscale images by around 

18% in Manhattan distance and almost same in Euclidean distance. 

Xia, Z et al. [8]  models the message embedded by LSB matching as the independent noise to the 

image, and theoretically prove that LSB matching smoothens the histogram of multi-order 

differences(MODF) for {0,90} degrees. The first four order differences are calculated and only the 

differences in the range of [4, 4] are considered. Histogram of low order differences can be 



approximated by Laplace distribution. The smoothness caused by LSB matching is especially apparent 

at the peak of the histogram. The GLCM is utilized to model the differences with the small absolute 

value in order to extract features due to the fact that they are more sensitive to the embedded 

message. Support Vector Machine (SVM) is used to classify using these features. Natural Resources 

Conservation Service (NRCS) dataset and BOSS dataset are used with 1.0, 0.5, 0.25, and 0.1 bits per 

pixel (bpp) payload. The detection reliability 𝜌 is 0.5621 with NRCS and 0.8906 for BOSS using for 4-

ODF. 

Anjum A. et al. [9] proposed a series of upgraded neighbor pixel predictor (NPP) methods such as 

4,8,24 and adaptive NPP for edge and boundary pixels to be used in weighted steganography (WS) 

method. Edge pixels are detected using dynamic pixel predictor and NPP of these pixels are taken into 

account. Proposed Ignore boundary (8-NPP) method detection rate is 0.47491 at 0.5 bpp payload 

which is better than WS method rate of 0.37089 when experimented with BOSS database. 

Juarez-Sandoval O. et al. [10] proposed a method in which the input image Ic is embedded using LSB 

matching with 100% payload to generate Stego image Is. Twelve feature vectors of the form Fi=(Ic/Is) 

is created for i=1, 2…12. Fi for i= 3,4,5,6 is derived from the GLCM of the difference between Icand Is. 

F1 and F2 are defined as the ratio of the shape parameter of the Generalized Gaussian Distribution 

(GGD) of the PDF difference of the Ic and Isfor 4 adjacency and 8 adjacency. F7 and F8 are calculated 

from the centre of mass of the histogram characteristics function of difference of adjacent pixels under 

4 adjacency and 8 adjacencies respectively. F9, F10 are calculated by the ratio of the inclination of the 

central part of the PDF for 4 adjacency and 8 adjacency difference of pixel of Ic and Is. The feature F11 

and F12 are calculated exactly as F9 and F10 with a difference that Stego image for this case is again 

exposed a LSB matching steganography with 100% payload. SVM is used with ddifferent payloads of 

100%, 75%, 50% and 25%.The scheme achieved 96.25 % and 90.96% detection accuracy with 100% 

payload for BOWS-2 and UCID dataset respectively. 

Sun Z. et al. [11] proposed a method that computes the forward difference of adjacent pixels in three 

directions horizontal, vertical and diagonal,  to obtain three-directional differential images. Because 

of high correlation between neighboring pixels, the majority of the differential pixels are highly 

concentrated in a small range near zero. They are again thresholded to remove redundancy and to 

reduce GLCM features. SVM is used to examine the spread spectrum (SS), +- LSB and generic LSB 

method with 0.1, 0.2 and 0.3 bpp.600 grayscale image of Vision Research Lab is used. 78%, 91.75% 

and 92.75% accuracy is achieved for SS,+-LSB and generic LSB respectively at 0.3 bpp. 

 

1.2.2 MOTIVATION 

The motivation for doing this work is based on the literature survey. Most of the work in the field that 

we came across attacks the problem where the steganography is carried out using the LSB embedding 

technique. So, we decided to generalize the problem so that the proposed can attack a wide range of 

steganography methods other than LSB embedding steganography with the goal of an increased 

accuracy percentage in comparison to the methods we have surveyed. Also, with the advent of 

steganography in the field of medical industry our proposed approach covered later in the paper is a 

dedication to the medical field and targeted medical organizations on making patient diagnosis 

information more secure. 



CHAPTER 1.3: PROPOSED METHOD 

 

1.3.1 PROPOSED METHOD 

The proposed method provides a steganalytic technique  to detect steganography on a 

grayscale image with the use of GLCM. The GLCM of cover images are calculated. Five of  

Haralick’s features are calculated on each of these images’ GLCM matrix. Following Haralick’s 

features are combined withthe Principal Component Analysis (PCA) features which are 

extracted from the GLCM of each of these images.  To avoid the complexity and bulkiness of 

this huge dataset, only the first few PCA features of each image are taken into consideration, 

since the useful information tends to be at the beginning in a PCA model. Same operations of 

feature extraction are carried out on stego-images, and each of their features are compared 

with that of their cover image counterpart via Neural Network classifier. 

A detailed description of the above method is given afterwards in the paper. 

1.3.1.1 GLCM calculation  

The proposed method calculates the GLCM as mentioned in [1] with changes in the value of 

the offset i.e.∆𝑥, ∆𝑦. To obtain the GLCM first we find the average of all the GLCM as shown 

in fig. 1.  

For GLCM along 0ᵒ we use the offset value (1,0). Similarly, for 45ᵒ, 90ᵒ, 135ᵒ we use offsets as 

(1,1), (0,1) and (-1,1) respectively. 

𝐺𝐿𝐶𝑀 =
𝐺𝐿𝐶𝑀0° +  𝐺𝐿𝐶𝑀45° + 𝐺𝐿𝐶𝑀90° + 𝐺𝐿𝐶𝑀135°

4
                                       (8) 

 

1.3.1.2 Feature Extraction 

a. Extraction of Haralick Texture Features: Robert M. Haralick has suggested many textural 

features which can be extracted from each of the gray-tone spatial-dependence matrices. For 

this method, only five of them have been calculated from the Gray-level Co-occurrence matrix 

(GLCM) of images obtained. 

Uniformity or energy                      = ∑ 𝑝𝑖,𝑗
2

n

𝑖,𝑗=0
    

Entropy                                             = ∑ 𝑝i,j ∗ log (𝑝i,j)
𝑛

𝑖,𝑗
   

Maximum Probability                     = 𝑚𝑎𝑥𝑖,𝑗   𝑝𝑖,𝑗    



Contrast                                            = ∑ |i − j|l ∗ 𝑝i,j
k

𝑛

𝑖,𝑗
   

Inverse difference moment           = ∑
𝑝𝑖,𝑗

|i−j|l

𝑛

𝑖,𝑗=0
𝑖≠𝑗

    

where, I and j are the ith row and jth column respectively in the normalized gray-level 

spatial-dependence co-occurrence matrix of an image. 

b. Extraction of Principle Component Analysis (PCA) Features: The GLCM matrix for a image is of 

the order 256X256 if the entire GLCM flattened into row form and used as the feature vector for the 

image classification then the dimensionality of the feature vector will be 65536 which is a huge 

number. To reduce the dimensionality PCA is used using SVD (Singular value Decomposition).  

In singular value decomposition of the matrix M of order nXm where n represents the number of 

observations of experiment and m=65536 represents data points associated with each experiment. 

𝑀𝑛𝑋𝑚 = 𝑈𝑛𝑋𝑛𝑆𝑛𝑋𝑚𝑉𝑚𝑋𝑚
𝑇                                   (9) 

Where U and V are orthogonal matrix and S is a rectangular diagonal matrix. 

The Eigen vectors of the matrix MMT behave as the columns for U. Similarly the Eigen vectors of the 

matrix  MTM behave as the columns for V. And the Eigen values for MMT and MTM are the singular 

elements of the S. 

We take first 100 columns from the matrix U as features. 

 

1.3.2 TRAINING THE CLASSIFIER 

The combination of the PCA features and the Haralick statistics are extracted from the GLCM of the 

image. The extracted feature vector is augmented with a value which behaves as the label for the class 

of the image which is requires in supervised learning. The model is trained using backward propagation 

algorithm. 
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1.3.3 FLOWCHART 
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Generation of average 

GLCM of each image as (2) 

Extraction of Haralick Statistics PCA of the GLCM using Singular 
Value Decomposition(SVD). 

      Calculation of MMT  

Find Eigen vectors of MMT 

Create a matrix M with vertical 
stacking of  flattened GLCM  
along row M has rows equal to 
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columns = 65536   
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FEATURE MATRIX(FM)= U augmented with  Haralick 

Statistics 
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1.3.4 ALGORITHM 

STEP 1: Average GLCM (G1) IS CALCULATED FOR EACH IMAGE. 

STEP 2: Haralick statistics are calculated for G1 based on equation (3),(4),(5),(6),(7).       

STEP 3: G1 IS FLATTEND IN T0 A ROW TO FORM A 1D ARRAY TO FORM R’. 

STEP 4: REPEAT STEP1 TO STEP3 AND VERTICALLY STACK EACH R’ to form a matrix 

(M). 

STEP 5: Calculate the new matrix M’=MMT. 

STEP 6: Calculate the eigen vectors for M’. 

STEP 7: Eigen vectors stored in column major form to form a matrix F.  

STEP 8: The feature matrix (FM) holds first 100 columns of F and haralick statistics 

combined. 

 

  

 

 



CHAPTER 1.4: RESULTS, ANALYSIS AND COMPARISON 
Accuracy: The accuracy of the model is defined as the ratio of correct predictions to total number of 

predictions. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝛼) =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                          (10) 

A image dataset named labeled faces in the wild (L.F.W.) is considered for experiment. 1300 images 

are randomly taken from this dataset and is converted into grayscale. This images are exposed to a 

steganography with 25%, 50%, 100% payload respectively to generate another 1300 image in each 

category. So the dataset comprised of 1300 cover images and 3900 stego images. Since number of 

stego images is greater than cover image to avoid the bias during the classification separate 

classification is carried out on models with same parameters.  

The neural network is trained using stochastic gradient descent replacement optimization algorithm 

‘adam’ with 64 nodes each densely connected in each of the 3 hidden layers. Each hidden layer uses 

tan inverse (tanh) as activation function. The number of nodes in input layer varies with length of 

feature vector. 

 The accuracy values α lies in the range [0,1] i.e. 0≤α≤1 and  α0 means lower accuracy.  

Table(a) denotes the accuracy of the model for L.F.W. datasets. 

Whereas Table(b) denotes the comparison of the proposed method with other methods. 

Category of the Model Accuracy 

Detection between Cover and images 

embedded with 25% payload. 
0.8095 

Detection between Cover and images 

embedded with 50% payload. 
0.8909 

 

Detection between Cover and images 

embedded with 100% payload. 
0.9093 

 

(a) 

The same model is used for  Break Our Steganographic System(BOSS) dataset which is benchmark in 

the field of  steganography and  steganalysis. The dataset compsed of  10000 color images. Among 

these 1300 images were selected at random. This images are exposed to a steganography with 25%, 

50%, 100% payload respectively to generate another 1300 image in each category. So the dataset 

comprised of 1300 cover images and 3900 stego images.The comparison of the method proposed in 

the paper  to that of some previous methods is given as follows. 



Category of the Model Accuracy of 

proposed 

method 

Accuracy of 

ALE 

Accuracy of 

Model with 

texture 

feature[] 

Subtractive 

pixel adjacency 

matrix(SPAM) 

Detection between Cover 

and images embedded 

with 25% payload. 

0.844854 0.3214 
 

 

 

 

 

 

0.8288 
 

0.9512 

Detection between Cover 

and images embedded 

with 50% payload. 

0.843317 

 

0.5835 

 

0.9774 

 

Detection between Cover 

and images embedded 

with 100% payload. 

0.846390 

 

0.7335 

 

0.9512 

 

(b) 

 

  

 

Loss curve for validation and accuracy for comparison of  

Cover and 25% payload embedded images. 

   

Accuracy curve for validation and accuracy for 

comparison of Cover and 25% payload embedded 

images. 

 



  

 

Loss curve for validation and accuracy for comparison of Cover and 25% 

payload embedded images. 

 

 

Accuracy curve for validation and accuracy for comparison of Cover 

and 25% payload embedded images. 

 

 

 

Accuracy curve for validation and accuracy for comparison 

of Cover and 25% payload embedded images. 

 

 

PCA curve for the same instance as previous we 

see d 

 

Loss curve for validation and accuracy for comparison of 

Cover and 25% payload embedded images. 

 

 

PCA curve for an instance of feature vector for 500 

points 



CHAPTER 1.5: CODE 
The programming  language used to conduct the experiments is done using Python. Also the software 

used for steganography to create datasets is done using StegHide.   

Code snippet for generating average GLCM and creating the matrix from this GLCM’s:  

import imageio 
import numpy as np 
import os 
import pickle 
def co_occurence(img): 
    glcm=np.empty([256,256],dtype=np.float) 
    glcmr=np.full_like(glcm,0) 
    glcmur=np.full_like(glcm,0) 
    glcmu=np.full_like(glcm,0) 
    glcmul=np.full_like(glcm,0) 
    for i in range(img.shape[0]): 
        for j in range(img.shape[1]): 
            r=j+1 
            u=i-1 
            l=j-1 
            if r<img.shape[1]-1: 
                glcmr[img[i,j],img[i,r]]+=1 
            if u>=0: 
                glcmu[img[i,j],img[u,j]]+=1 
            if u>=0 and r<img.shape[1]-1: 
                glcmur[img[i,j],img[u,r]]+=1 
            if u>=0 and l>=0: 
                glcmul[img[i,j],img[u,l]]+=1 
    return (glcmr+glcmu+glcmur+glcmul)//4 
l=[] 
c=0 
for i in os.listdir('./../bossbase_gray'): 
 c+=1 
 if c>1301: 
  break 
 else:  
     imgo=co_occurence(imageio.imread('./../bossbase_gray/'+i)).ravel() 
     l.append(imgo) 
l=np.array(l) 
file=open('featureo','wb') 
pickle.dump(l,file)     
 

Code snippet for converting the matrix using PCA decomposition: 

import pandas as pd 
from sklearn.decomposition import PCA 
import csv 
import numpy as np 
import os 



import pickle 
 

# LOADING MATRIX OF GLCM 
fo=open('featureo','rb') 
f25=open('feature25','rb') 
f50=open('feature50','rb') 
f100=open('feature100','rb') 
#Conversion into Pandas Frame 
do=pd.DataFrame(pickle.load(fo)) 
d25=pd.DataFrame(pickle.load(f25)) 
d50=pd.DataFrame(pickle.load(f50)) 
d100=pd.DataFrame(pickle.load(f100)) 
pca=PCA() 
print(pca) 
 

#PCA conversion 
l=pd.DataFrame(np.array([0 for  i in range(1301)])) 
to=pd.DataFrame(np.array(pca.fit_transform(do))[:,:500]) 
to=pd.concat((to,l),axis=1) 
print(to.shape) 
l=pd.DataFrame(np.array([1 for  i in range(1301)])) 
t25=pd.DataFrame(np.array(pca.fit_transform(d25))[:,:500]) 
t25=pd.concat((t25,l),axis=1) 
print(t25.shape) 
l=pd.DataFrame(np.array([1 for  i in range(1301)])) 
t50=pd.DataFrame(np.array(pca.fit_transform(d50))[:,:500]) 
t50=pd.concat((t50,l),axis=1) 
print(t50.shape) 
l=pd.DataFrame(np.array([1 for  i in range(1301)])) 
t100=pd.DataFrame(np.array(pca.fit_transform(d100))[:,:500]) 
t100=pd.concat((t100,l),axis=1) 
print(t100.shape) 
transformed=pd.concat((to,t25,t50,t100),axis=0) 
print(transformed.shape) 
 

#SAVING TO EXCEL FILE 
transformed.to_excel('pca.xlsx') 
 

 

Calculation of Haralick Features 

import pickle 

import numpy as np 

import pandas 

from scipy import stats 

#loading the GLCM 

file=open('feature100','rb') 

dfo=pickle.load(file) 

 



#CALCULATION OF ENTROPY  AND  MAXIMUM 

entropyo=[] 

mo=[] 

for i in dfo: 

    k=i/(512*512) 

    entropyo.append(stats.entropy(k)) 

    mo.append(k.max()) 

 

#CALCULATION OF POWER 

power=[] 

for i in dfo: 

    k=i/(512*512) 

    power.append((k*k).sum()) 

 

#CALCULATION OF CONTRAST AND INVERSE DIFFERENCE MOMENT 

l=np.array([-i for i in range(256)]) 

k=[] 

for i in range(256): 

    k.append(l+i) 

k=np.abs(np.array(k)).ravel()   

contrast=[] 

inv=[] 

for i in dfo: 

    j=i/(512*512) 

    contrast.append((j*k).sum()) 

l=np.array([-i for i in range(256)]) 

k=[] 

for i in range(256): 

    k.append(l+i) 

for i in range(256): 

    k[i][i]+=1 

k=np.abs(np.array(k)).ravel()   

for i in dfo: 

    j=i/(512*512) 

    t=(j/k) 

    y=np.reshape(t,(256,256)) 

    inv.append(t.sum()-y.diagonal().sum()) 

new=np.dstack((entropyo,mo,power,contrast,inv)) 

df=pandas.concat((dfori,df25,df50,df100),axis=0) 

df.to_excel('haralick.xlsx') 

 

The Haralick Features and PCA matrix are combined together in spreadsheet software. 

The new matrix found is passed for training in Neural Network. 

 



Code snippet for training, testing and validation of models: 

import pandas as pd 

from sklearn.decomposition import PCA 

import csv 

from sklearn.model_selection import train_test_split 

from sklearn import neural_network as nn 

from sklearn import svm 

from sklearn.model_selection import cross_val_score 

from sklearn.model_selection import cross_validate 

import numpy as np 

import os 

import pickle 

from keras.models import Sequential 

from keras.layers import Dense,Dropout 

from keras.optimizers import RMSprop,Adam 

from keras.utils import to_categorical 

import matplotlib.pyplot as plt 

df=pd.read_excel('pca.xlsx') 

df=np.array(df) 

do=pd.DataFrame(df[:1301]) 

d25=pd.DataFrame(df[1301:2602]) 

df50=pd.DataFrame(df[2602:3903]) 

df100=pd.DataFrame(df[3903:5204]) 

do25=pd.concat((do,d25),axis=0) 

do50=pd.concat((do,df50),axis=0) 

do100=pd.concat((do,df100),axis=0) 

train,test=train_test_split(do25[:]) 

print(train.shape,test.shape) 

trainx=np.array(train)[:,:105] 

trainy=np.array(train)[:,505] 

testx=np.array(test)[:,:105] 

testy=np.array(test)[:,505] 

 

#COMPARISON OF COVER IMAGE TO 25% PAYLOAD STEGO IMAGES 

train_y=to_categorical(trainy,2) 

test_y=to_categorical(testy,2) 

model=Sequential() 

model.add(Dense(64,activation='tanh',input_shape=(205,))) 

model.add(Dropout(0.2)) 

model.add(Dense(32,activation='tanh')) 

model.add(Dropout(0.2)) 

model.add(Dense(16,activation='relu')) 

model.add(Dense(2,activation='softmax')) 

model.summary() 

model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy']) 



history=model.fit(trainx,train_y,validation_data=(testx,test_y),verbose=0,batch_size=10,epochs=500

) 

loss=history.history['loss'] 

acc=history.history['acc'] 

val_loss=history.history['val_loss'] 

val_acc=history.history['val_acc'] 

plt.plot(range(500),loss,label='accuracy') 

plt.plot(range(500),val_loss,label='validation') 

plt.legend() 

plt.show() 

plt.plot(range(500),acc,label='accuracy') 

plt.plot(range(500),val_acc,label='validation') 

plt.legend() 

plt.show() 

score=model.evaluate(testx,test_y) 

print(score[1]) 

 

#Cover to 50% payload comparison 

train,test=train_test_split(do50[:]) 

print(train.shape,test.shape) 

trainx=np.array(train)[:,:205] 

trainy=np.array(train)[:,505] 

testx=np.array(test)[:,:205] 

testy=np.array(test)[:,505] 

train_y=to_categorical(trainy,2) 

test_y=to_categorical(testy,2) 

model=Sequential() 

model.add(Dense(64,activation='tanh',input_shape=(205,))) 

model.add(Dropout(0.2)) 

model.add(Dense(32,activation='tanh')) 

model.add(Dropout(0.2)) 

model.add(Dense(16,activation='relu')) 

model.add(Dropout(0.2)) 

model.add(Dense(2,activation='softmax')) 

model.summary() 

model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy']) 

history=model.fit(trainx,train_y,validation_data=(testx,test_y),verbose=0,batch_size=10,epochs=500

) 

loss=history.history['acc'] 

plt.plot(range(500),loss) 

plt.show() 

score=model.evaluate(testx,test_y) 

print(score[1]) 

loss=history.history['loss'] 

acc=history.history['acc'] 



val_loss=history.history['val_loss'] 

val_acc=history.history['val_acc'] 

plt.plot(range(500),loss,label='accuracy') 

plt.plot(range(500),val_loss,label='validation') 

plt.legend() 

plt.show() 

plt.plot(range(500),acc,label='accuracy') 

plt.plot(range(500),val_acc,label='validation') 

plt.legend() 

plt.show() 

 

#Cover to 100% payload comparison 

train,test=train_test_split(do100[:]) 

print(train.shape,test.shape) 

trainx=np.array(train)[:,:105] 

trainy=np.array(train)[:,505] 

testx=np.array(test)[:,:105] 

testy=np.array(test)[:,505] 

train_y=to_categorical(trainy,2) 

test_y=to_categorical(testy,2) 

model=Sequential() 

model.add(Dense(64,activation='tanh',input_shape=(105,))) 

model.add(Dropout(0.2)) 

model.add(Dense(32,activation='tanh')) 

model.add(Dropout(0.2)) 

model.add(Dense(16,activation='relu')) 

#model.add(Dropout(0.2)) 

model.add(Dense(2,activation='softmax')) 

model.summary() 

model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy']) 

history=model.fit(trainx,train_y,validation_data=(testx,test_y),verbose=0,batch_size=20,epochs=500

) 

loss=history.history['acc'] 

plt.plot(range(500),loss) 

plt.show() 

score=model.evaluate(testx,test_y) 

print(score[1]) 

loss=history.history['loss'] 

acc=history.history['acc'] 

val_loss=history.history['val_loss'] 

val_acc=history.history['val_acc'] 

plt.plot(range(500),loss,label='accuracy') 

plt.plot(range(500),val_loss,label='validation') 

plt.legend() 

plt.show() 



plt.plot(range(500),acc,label='accuracy') 

plt.plot(range(500),val_acc,label='validation') 

plt.legend() 

plt.show() 

 

 

CHAPTER 1.6: CONCLUSION 

In this paper we have proposed a new blind steganalysis method for detection of steganography in 

grayscale images and evaluated its performance on L.F.W. and BOSSBase image datasets which have 

been converted to grayscale images.The suggested method uses PCA and Haralick features of the 

average GLCM to extract the feature of image and passed these extracted features into a Neural 

Network for training. Extensive experimental results demonstrated that the proposed steganalyser 

performs a lot better when we take first 100 PCA components into account combined with Haralick 

texture features. In future we plan to extend this method towards detecting steganography in color 

images and also predict the length of secret message embedded in image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 2: EXTENDING THE APPROACH BY USE OF 

CONVOLUTIONAL NEURAL NETWORKS 

 

CHAPTER 2.1 INTRODUCTION 

Steganography has been used as an effective methodology in hiding secret data within images in the 

past. With advent of newer steganographic algorithms in past few decades aiming to secure hidden 

data, advancement in steganalysis methods has also been made to detect powerful embedding within 

cover images which were once impossible. In view of this, Convolutional Neural Network (CNN) has 

shown huge success over two-part structure of traditional machine learning methods. In this paper, 

we focus on the methodology of some popular spatial domain image steganalysis convolutional neural 

networks proposed in existing literature and compare their detection accuracy rates against standard 

embedding steganographic algorithms like WOW, S-UNIWARD, HILL, etc with variety of payloads. 

 

2.1.1 CONVOLUTIONAL NEURAL NETWORKS IN STEGANALYSIS 

The network consists of a given number of blocks that consists of neurons that take real input values, 

perform calculations, and then transmit the actual calculated values to the next block. The 

Convolutional Neuronal Networks used for steganalysis are mainly built in three parts, which we will 

call modules: the pre-processing module, the convolution module, and the classification module.  

2.1.1.1 Pre-processing module  

In the pre-processing module the image is filtered by high-pass filters. This preliminary filtering step 

allows the network to converge faster and is probably needed to obtain good performance when the 

learning database is too small [107] (only 4 000 pairs cover/stego images of size 256 × 256 pixels). The 

filtered images are then transmitted to the first convolution block of the network.  

2.1.1.2 Convolution module 

Specifically, a block takes a set of feature maps (a set of images) as input and returns a set of feature 

maps as output (a set of images). Inside a block, there are a number of operations including the 

following four:  

a. Convolution  

A convolution is carried out between the input image and a filter. Except for the pre-processing block, 

in the other blocks, once the convolution has been applied, we apply activation, pooling, and 

normalization. Then we obtain a new image named feature map. The combined operation in 

convolution can be replaced by a separate operation called Depthwise Separable Convolutions, which 

allows us to integrate activation function such as a ReLU, between the spatial convolution and the 

convolution on the “depth” axis (for the “depth” axis we use a 1 × 1 filter). Thus, the Depthwise 

Separable Convolution can roughly be resumed as a weighted sum of convolution which is a more 

descriptive operation than just a sum of convolution. 

 



b.  Activation  

Once each convolution of a convolution block has been applied, an activation function is applied on 

each value of the filtered image. The activation function can be one of several, for example be an 

absolute value function f(x) = |x|, a sinusoidal function f(x) = sinus(x), a Gaussian function as in [80] 

f(x) = e −x 2 σ2 , a ReLU (for Rectified Linear Unit): f(x) = max(0, x), etc. These functions break the 

linearity resulting from linear filtering performed during convolutions. The chosen activation function 

must be differentiable to perform back-propagation. The most often retained solution for the 

selection of an activation function is one whose derivative requires little calculation to be evaluated. 

Besides, functions that have low slope regions, such as the hyperbolic tangent, are also avoided, since 

this type of function can cause the value of the backpropagated gradient to be canceled during back-

propagation, and thus will make learning impossible. Therefore, in many networks, we very often find 

the ReLU activation function, or one of its variants.  

c. Pooling  

The pooling operation is used to calculate the average or the maximum in a local neighborhood. In 

most steganalysis networks, it is preferred to use average pooling to preserve stego noise which is of 

very low power. Moreover, pooling is often coupled to a down-sampling operation (when the stride 

is greater than 1) to reduce the size (i.e., the height and width) of the resulting feature map compared 

to feature maps from the previous block. 

d. Normalization 

One additional step called batch normalization is applied after certain layers in the CNN. Batch 

normalization is a technique used to increase the stability of a neural network. It helps our neural 

network to work with better speed and provide more efficient results. 

Given a random variable X whose realization is a value x ∈ R of the feature map, the BN of this value 

x is: 

 

 

with E[X] the expectation, V ar[X] the variance, and γ and β two scalars representing a re-scaling and 

a re-translation. The expectation E[X] and the variance V ar[X] are updated at each batch, while γ and 

β are learned by back-propagation. 

2.1.1.3 Classification module  

This classification module is often a traditional neural network where each neuron is fully connected 

to the previous block of neurons and to the next block of neurons. The fully connected blocks often 

end with a softmax function which normalize the outputs delivered by the network between [0, 1], 

such that the sum of the outputs equal one. So, in the usual binary steganalysis scenario, the 

network delivers two values as output: one giving the probability of classifying into the first class 

(cover), and the other giving the probability of classifying into the second class (stego). The 

classification decision is then obtained by returning the class with the highest probability. In front of 

this classification module, a global average pooling, a Spatial Pyramid Pooling, a statistical moments 



extractor, etc are found. Such pooling operations return a fixed-size vector of values, that is to say, a 

feature map of fixed dimensions. The next block to this pooling operation is thus always connected 

to a vector of fixed size. 

 

CHAPTER 2.2 RELATED WORK & COMPARISON 
 

2.2.1 RELATED WORK  

Xu et al.[16] used BOSSbase with 10,000 images (512*512) as their dataset. They proposed a 

Convolutional Neural Network (CNN) architecture named Xu-Net. The input image is first passed 

through a high pass filter of kernel size (5*5*1) to amplify signal to noise ratio. After this the obtained 

image is passed in to the CNN model. The CNN converts each image into feature vector of 128 

dimensions. The architecture is divided into 5 components along with a fully connected neural 

network. Each component starts with generating feature maps and ends with average pooling. In 

group 1 the 8 feature maps are generated using kernel of size (5*5*1). This are converted into absolute 

values. After which batch normalization is applied before passing it to activation function layer with 

TanH. After this average pooling of size (5*5) is executed to generate (8*256*256). In group 2 the 16 

feature maps are generated using kernel size(5*5*8). After which batch normalization is applied and 

TanH activation and average pooling (5*5) stride 2 to generate (16*128*128). In group 3 the 32 

feature maps are generated using kernel size (1*1*16) . Then BN and ReLU is applied and then average 

pooling of size (5*5) of stride 2 to generate (32*64*64). In group 4 the 64 feature maps are generated 

using kernel size(1*1*32) . Then BN and ReLU are applied and then average pooling of size (5*5) of 

stride 2 to generate (64*32*32). In group 5 the 128 feature maps are generated using kernel size 

(1*1*64). The BN and ReLU is applied after which a global average polling is applied using a kernel of 

size (32*32) to generate 128(1*1). This 128*(1*1) are passed into the fully connected neural network 

with Softmax in output layer. BN is used to convert input layer into a zero mean and unit variance. 

Detection accuracy of S-UNIWARD algorithm at 0.1 bpp by CNN is 57.33% and by SRM is 59.25%, and 

at 0.4 bpp by CNN is 80.24% and by SRM is 79.53%. Detection accuracy of HILL algorithm at 0.1 bpp 

by CNN is 58.44% and by SRM is 56.44%, and at 0.4 bpp by CNN is 79.24% and by SRM is 75.47%.  

 Yedroudj et al.[17] used BOSS, BOWS2, VA datasets and proposed an architecture named 

Yedroudj-Net which is similar to Xu-Net except that in first two groups Trunc function is used instead 

of TanH function similar to Ye-Net. Along with that the neural network has 256, 1024 hidden layers 

with ReLU activation function and output layer with two nodes having Softmax as activation function. 

Results showed that error probability rate of Yedrouj-Net for WOW at 0.2 bpp is 27.8% and at 0.4 bpp 

is 14.1%, and for S-UNIWARD at 0.2 bpp is 36.7% and at 0.4 bpp is 22.8%. Error probability of Yedrouj-

Net at 0.2 bpp for BOSS  dataset is 27.8%, for BOSS+BOWS2 is 23.7% and for BOSS+BOWS2+VA is 

20.8%. 

 Reinel et al.[18] used BOSSbase 1.01, BOWS 2 databases (10,000 grayscale images of size 

512×512×1 changed to a size of 256×256×1) for their proposed GBRAS-Net. The pre-processing data 

normalisation stage consists of a convolution with 30 filters of size (5,5), which are not modified in 

training phase. The convolutional layers in this stage are configured with same padding, strides of 

(1,1), with 30 filters, and a 3TanH activation function with values between −3 and 3. The 30 filters used 



to pre-process the images are derived from YE-NET which showed a high pre-processing capacity for 

subsequent feature extraction. These 30 filters are normalized by the maximum absolute value of each 

filter. This filter set is composed of 8 filters class 1, 4 filters class 2, 8 filters class 3, 1 filter square 3×3, 

4 filters edge 3×3, 1 filter square 5×5, and 4 filters edge 5×5. Set of filters are selected and divided into 

seven classes according to their original use to obtain better performance for the feature extraction 

stage. Maximum absolute value of each filter type was used to normalize each of its values. The 

feature extraction stage uses convolutional layers, separable convolutions, and depth-wise 

convolutions with adjustment in the parameters and filters to enhance performance. Feature 

extraction also uses shortcuts and the same padding was used and the same number of filters were 

contained within the layers between the start and end of the shortcut. Average Pooling layers after 

Batch Normalization were used to reduce dimensionality, with a configuration of a pool_size(2,2) and 

strides(2,2). There are six convolutional layers with (3,3) filters, and at the end of the stage, there are 

two convolutional layers with kernel_size (1,1). The activation function used for all convolutions and 

separable convolutions is Exponential Linear Unit (ELU). The strides are (1,1) and the padding is same 

in all convolutions. The first two convolutional layers of this stage have 30 filters, while the next four 

have 60 filters, the penultimate has 30, and the last has 2. The network has separable convolutions 

inside shortcuts, with 30 and 60 filters, a kernel_size of shape (3,3), strides (1,1), same padding, and 

depth_multiplier of 3. Global average pooling is done in the end of the stage to prepare the features 

for classification In the last Batch normalization of shape 16×16×2, with a global average pooling 2D 

generates two values; then, the predictions are obtained with the Softmax function. The data 

distribution was 4000, 1000, and 5000 pairs of images for Training, Validation, and Testing 

respectively. Compared with ZHU-Net architecture, the proposed CNN shows improved accuracy on 

BOSSbase 1.01 dataset, by 3.4% on WOW with 0.2 bpp and 1.7% on WOW with 0.4 bpp, 2.2% and 

2.6% on S-UNIWARD (0.2 and 0.4 bpp respectively), 3.1% and 5.3% on MiPOD (0.2 and 0.4 bpp), 1.9% 

and 5.4% on HILL (0.2 and 0.4 bpp), 6.5% and 5.2% on HUGO (0.2 and 0.4 bpp), (see Tables 1, 2). When 

using BOWS 2 on the training data, the improvements for 0.2bpp are of 0.7% and 2.2% for WOW and 

S-UNIWARD, respectively. 

 Zhang et al.[19] used BOSSBase v1.01 dataset (10,000 uncompressed grey-level images of size 

512×512), BOWS2 (10,000 uncompressed grey-level images of size 512×512) for their proposed Zhu-

Net. The CNN is composed of one image pre-processing layer, two separable convolution (sepconv) 

block, four basic blocks for feature extraction, a spatial pyramid pooling (SPP) module, and they are 

fully connected layers followed by a Softmax. The convolutional blocks have four blocks marked as 

Basic Block 1(Convolution layer), Basic Block 2(Batch Normalisation layer), Basic Block 3(Non-liner 

activation function), and Basic Block 4(Average pooling layer) to extract spatial correlation between 

feature maps and finally transport to the fully connected layer for classification. The size of the 

convolutional kernels is 3×3 for the Basic Block 1-4. For Basic Block 1 to Basic Block 4, there are 32, 32, 

64, 128 channel to extract local features. Batch normalization is usually used to normalize the 

distribution of each mini-batch to a zero-mean and a unit-variance during the training to prevent the 

gradient vanishing/exploding and over-fitting in the deep neural network, and allow relatively large 

learning rate to speed up the convergence. Rectified Linear Unit (ReLU) is used  as the activation 

function for all blocks to prevent gradient vanishing/exploding, produce sparse features, accelerate 

network convergence, extract more efficient features and benefit back-propagation gradient 

calculations. Average pooling layers are used in Basic Block 1 to Basic Block 3, to down-sample feature 

maps, abstract the image features, enlarge the receptive fields and enhance the generalization ability 



of the network. Fourth Block is excluded from pooling to avoid information loss. Separable convolution 

blocks (Sepconv Blocks 1and 2) are used to enhance SNR (signal noise ratio of stego signal to image) 

and better treat the spatial and the channel correlations. In the last block, a SPP (Spatial pyramid 

pooling) module is used to better extract features. The SPP module enriches feature expressions by 

multi-level pooling. At the end of Zhu-Net, three fully connected layers are used, where the number 

of neurons is 2688, 1024 and 2. The final fully connected layer use a softmax activation function to 

produces the score of two class labels (cover or stego). The BOSSBase images were randomly split into 

a training set with 4,000 cover and stego image pairs, a validation set with 1,000 image pairs, and a 

testing set containing 5,000 image pairs. The experiment results show that when the training set is 

incremented, the detection performance for all the networks will be improved compared with that 

using the BOSS training set only. For WOW at 0.2 bpp, using training set BOSS+BOSW2 comparing to 

using only BOSS training set, Zhu-Net reduced the error rate by 5.5% and for S-UNIWARD at 0.2 bpp, 

the detection error rates of Zhu-Net decreased by 4.2% comparing to only using BOSS training dataset. 

Further training three networks on BOSS + BOWS2 + DA showed decreased detection error by 10.2% 

and 11.4% against WOW and S- UNIWAR. In addition, for S-UNIWARD and WOW with different 

payloads, the proposed network is 8.0% to 9.5% better than Xu-Net, 5.3% to 7.4% better than Ye-Net, 

4.4% to 8.5% better than Yedroudj-Net and 1.3% to 4.1% better than SRNet. 

 You et al.[20] used 10,000 BOSSbase 1.01 native resolution images (both 512 x 512 and 256 x 

256 resized) for their proposed SiaStegNet. The proposed approach is based on Siamese architecture 

consisting of two symmetrical subnets each comprising of pre-processing and feature extraction 

phases. First, the two sub-areas of the input image (generated by dividing the image vertically from 

middle) separately enter the two parallel subnets. The subnets consist of structures, parameters and 

weights. The pre-processing phase used at front of each subnet produce noise residuals with the help 

of learnable SRM kernels. Each image sub-region is first passed through convolutional layer and 

weights of this layer are initialised to SRM filters (5 x 5 for a total of 30), also updated along with 

training. The convolution layers are denoted with kernel size x kernel size filters and numbers of 

output channel feature maps. Some continuous, un-pooled convolutional blocks, each consisting of 4 

elements: the ‘Conv3-30’s, batch normalisation (BN) layers, rectified linear units (ReLU) and a 

shortcut, are used to enhance the effect of extracting, referred to as SRNet as a whole. BN is adopted 

immediately after each Conv3-30 and before each ReLU. “Conv3” (3 x 3) is used as the smallest 

receptive field to capture the notions of left/right/up/down/center in accordance with the theory of 

VGGNet method. Next, the feature extraction phase extracts the feature vector of each sub-area noise 

residual. Down-sampling is performed by setting a stride of 2 at the first convolutional layer of Block 

B. Once feature map size is halved, the number if filters of subsequent convolutional layers are 

approximately doubled. Next, a global average pooling layer reduces the feature dimensionality of 

input image of any size to the number of channels (128), which is obtained as output representing 

sub-region of each image. These two sets of features are imported into a symbiotic relationship within 

the original image. The feature vectors of the two subnets are learned under the direction of two 

supervisory signals in the fusion/classification phase. One calculates four element-wise statistical 

moments of two subnet outputs and concatenates them. The resulting 4 x 128 (number of channels) 

= 512 dimensional vectors which captures information from sub-areas of their relationships are fed 

into two-class classifier (a fully-connected layer culminating in a Softmax layer with ross-entropy loss). 

A dropout layer with dropout ratio 0.5 is added before classifier to prevent over-fitting. The second 

signal in classification phase is a similarity signal which measures similarities between feature vectors 



extracted from different image sub-regions of a cover image, which is achieved via contrastive loss 

based on the Euclidean distance. 10,000 BOSSbase 1.01 native resolution images were divided into 

training, validation, and testing ratio set of 6:1:3. They were cropped into squares and resized to 256 

x 256 referred to s BOSS_256. Similarly a database of size 512 x 512 images were obtained, referred 

to as BOSS_512. Corresponding accuracy results are taken as output value of the objective function 

for tuning the network hyper-parameter and its architecture. The value of hyper-paramter was set to 

0.1 in above experiment. The accuracy of detecting images was respectively increased by using two 

symmetrical subnets and by adding statistical moments and LSML. The detection accuracy of proposed 

SiaStegNet are 76.16%, 72.99%, 69.17% at 0.1 bpp, 85.57%, 83.29%, 77.26% at 0.2 bpp, 89.91%, 

88.43%, 82.38% at 0.3 bpp and 92.09%, 91.89%, 85.97% at 0.4 bpp for WOW, S-UNIWARD and HILL 

embedding algorithms respectively. 

 Li et al.[21] used BOSSBase v1.01 dataset (10,000 uncompressed images of size 512x512). 

Their proposed CNN structure, ReST-Net composed of three parallel convolutional subnets and a fully 

connected classification module. Each subnet accepts an input image of size 512x512 and outputs a 

256-D feature vector. These subnets act as data-driven feature extractors, and are built based on Xu-

CNN. In Xu-CNN, TanH is used for activation in the first two convolutional groups and ReLU is used in 

the last three. Diverse Activation Modules are formed using ReLU, Sigmoid, and TanH activation 

functions simultaneously in the second and fourth convolutional groups. DAM is not used in all 

convolutional groups so that number of weights in convolutional kernels does not increase to make it 

more efficient for convergence. The structures of the three subnets are identical except for their pre-

processing layers equipped with different sets of high-pass filtering operations where N is the number 

of the filtered residuals. In subnet 1 the input image is pre-processed by filtering with a set of 6x6 

Gabor (product of a Gaussian function and a cosine function) filters and the resulting images are the 

input of the first convolutional block. The resulting 16 filters and residual maps are made zero-mean 

by subtracting the mean of the filter elements. In subnet 2 the input image is pre-processed by linear 

filtering with a set of high-pass filters from SRM, padded with zeros to obtain a unified size of 5x5, 

then they are grouped into nine classes. 16 filters are selected to obtain 16 linear residual images used 

as pre-processed inputs for subnet 2. In subnet 3 the input image is first pre-processed by filtering 

with some SRM high-pass filters and the resultant residual images are non-linearly processed with 

‘max’ or ‘min’ operator which computes the maximum or minimum values among the residual images 

within a filter class. The filters in the first seven classes are pre-processed in this manner finally 

resulting in 14 nonlinear residual images used as pre-processed inputs for subnet 3. The CNN model 

is trained in two phases. In the first phase, each subnet is pretrained independently with a fully 

connected layer and a Softmax function to classify cover and stego images. After training parameters 

in the subnets are fixed without further training and the fully connected layers are discarded. In 

second phase, a new fully connected layer with 768(256x3) input neurons is fed with the concatenated 

output feature vectors from the finals convolutional groups of all three subnets. Then this fully 

connected layer is trained which acts as the final classification module. This training process has two 

phases, one training the subnets for feature extraction and training the fully connected layer for 

classification. S-UNIWARD, HILL, and CMD-HILL steganographic algorithms were used for data 

embedding with payload from 0.1 to 0.5 bpp on the dataset. Images were randomly split into a training 

set of 4000 cover and stego image pairs, a validation set of 1000 image pairs, and a testing set of 5000 

image pairs. On S-UNIWARD, HILL, and CMD-HILL with different payloads, ReST-Net got an average 

accuracy improvement of 5.77%, 5.27%, and 3.83% over Xu-CNN, and 5.77%, 5.27%, and 2.83% over 



TLU-CNN respectively. Also, when only one subnet is used with increased number of filters for pre-

processing, it is less effective than using more subnets with less number of filters. Performance 

increases when number of subnets increase. 

 Jin et al.[22] in their IAS-CNN used BOSSBase v1.01 dataset (10,000 512 x 512 gray-level 

images). Their proposed network contains pre-processing layer, feature extraction layer, ad 

classification layer. In pre-processing layer, one of the filters of SRM used as the convolution kernel is 

used to extract residual features of the image. The number of residual maps generated from each 

image, say N in the pre-processing layer is equal to the number of filters, and the number of weights 

in the second convolutional layer can be expressed as 16 x (3 x 3) x N. Filter size of 3 x 3 or 5 x 5 are 

chosen as the convolutional kernels of the pre-processing layer. 3 filters are selected from 3 classes to 

initialise convolution kernels of size 3 x 3 and 2 filters are taken from 2 classes to initialise 

convolutional kernels of size 5 x 5. Selected filters are normalised and form of residual residual 

extraction is preserved before initialising the convolutional kernel of size 3 x 3 in SRM in the first layer 

of pre-processing layer. Then the features are combined with knowledge of selection channel as 

output. ReLUs are used as the non-liner activation functions from the second convolutional layer to 

the sixth convolutional layer. Feature extraction layer is composed of 5 convolutional layers (first 4 

convolutional layers used 16 convolutional kernels of size 3 x 3, while the remaining one uses 16 

convolutional kernels of size 5 x 5) and 5 average pooling layers with stride 2. The final classification 

layer consists of two 128-D feature fully connected layers, two dropout layers with parameter of 0.5, 

and a two-way Softmax. The Softmax is implemented by a fully connected layer and Softmax function. 

Dataset images were scaled to 256 x 256 pixels, and divided into training set of 8000cover images and 

8000 steganographic images, validation set of 1000 cover images and 1000 steganographic images, 

and test set of 1000 cover images and 1000 steganographic images. Detection accuracy of IAS-CNN 

against WOW steganographic algorithm was 68.15% at 0.2 bpp and 80.75% at 0.4 bpp, and against S-

UNIWARD steganographic algorithm was 62.40% at 0.2 bpp and 75.05% at 0.4 bpp. IAS-CNN is more 

effective in benefiting from fewer convolutional computations and limited computing resources. 

 Qian et al.[23] used BOSSbase dataset that contains 10,000 images which are processed to 

the size 512x512 pixels in their proposed method. High-pass filters are applied in image processing 

layer with kernel size 5x5. Feature extraction module consists of five convolutional layers which 

include three kind of operations convolution, non-linear activation and pooling. Some filters are 

learned in 1-5 convolutional layers in proposed network on HUGO algorithm with payload of 0.5bpp: 

16 learned filters of size 5x5 in layer 1, 256 filters of size 3x3 in layers 2-4 and 256 filters of size 5x5 in 

layer 5. Detection error of CNN model against HUGO algorithm when using different activation 

function and pooling operation-Gaussian (ave pool-17.20%,max pool-19.05%), I-Gaussian (ave pool-

16.55%, max pool-19.65%), ReLU (ave pool-16.65%, mamx pool-19.68%), TanH (ave pool-17.28%, max 

pool-18.95%). Dropout normalization method is proposed to be used in CNN architecture. In 

classification Layer a two-way Softmax activation is used on the top layer. Finally extracted features 

256 and each of the first two fully connected layers has 128 neurons and output of each neuron is 

activated by ReLUs. Trainable parameters in five convolutional layers are 13792 and 63456 parameters 

in whole network. They train CNN model using mini-batch stochastic gradient descent with mini-batch 

size of 128 images. Firstly training is done on 80% cover/stego pairs of training set and rest of the 

training set is used for validation. Features learned from high layer are more effective in the proposed 

method. Detection error for ensemble classifier is lower than Softmax classifier. Combination of 

learned features and handcrafted features improve detection performance. 



 Zhang et al.[24] used reduced dimension of BOSSBase dataset in their proposed AG-Net. The 

network initially has pre-processing block which uses a high pass filter to extract residual noise 

components. It has predefined high pass kernel which is applied over the image with padding 2 and 

stride 1. After this the image obtained by applying high pass kernel is provided as input to the 

confrontation module. The model has four confrontation module chained together. Where the first 

confrontation module receives from the high pass kernel and each successive confrontation module 

receives from the previous confrontation module. Each confrontation module comprises of two 

compound block which are identical and one confrontation block. The compound model encapsulate 

convolutional kernel, batch normalization, scaling, non-linear activation functions, pooling 

components which are common to any convolutional neural network. The confrontation block 

calculates the difference of the feature extracted from both the compound block for each cover and 

stego image. The feature extracted from compound block 1 that is for cover image is passed directly 

to the next adjacent compound block. Whereas the compound block 2 that is for stego image is passed 

to the next adjacent compound block with aggregation of the difference obtained from the 

confrontation block. The compound block 1 has 30 (5*5) kernel, and truncated activation function 

with average pooling. The compound block 2 and 3 has 30(3*3) kernel, and ReLU activation function 

with average pooling. The compound block 4 has 64(3*3) kernel, and ReLU activation function with 

global pooling. Finally the classification module comprises of fully connected neural network with 128 

nodes in first two layers with ReLU activation function. The output layer has two nodes and Softmax 

activation function. Error probability rate of AG-Net for WOW at 0.3 bpp is 22.43%, at 0.4 bpp is 

16.38%, at 0.5 bpp is 14.18%, for S-UNIWARD at 0.3 bpp is 19.34%, at 0.4 bpp is 14.51%, at 0.5 bpp is 

10.73%, and for HILL at 0.3 bpp is 22.04%, at 0.4 bpp is 15.05%, at 0.5 bpp is 15.40%. 

Wu et al.[25] used BOSSbase 1.01 dataset for their proposed CIS-Net. The method comprises 

of CNN along with two novel layer called STL (Single-value truncation layer) and SPL (Sub-Linear 

Pooling Layer). The image is first passed through a High pass Filter of kernel size 20 (5*5) and STL to 

extract large elements of the cover image. After this the extracted feature map is passed to the 

Feature Fusion layer where 28 (3*3) convolutional layers are used with parameterized ReLU and stride 

=1. After this  the feature map is passed to a layer with 56 (3*3) convolutional layers having ReLU as 

activation function and average pooling of kernel size (2*2) and stride=2. The feature maps are the 

passed to a layer with 112 (3*3) convolutional layers having ReLU as activation function and average 

pooling of kernel size (3*3) and stride=2. The feature maps are the passed to a layer with 224 (3*3) 

convolutional layers having ReLU as activation function and SPL of kernel size (3*3) and stride=2. The 

feature maps are the passed to a layer with 448(3*3) convolutional layers having ReLU as activation 

function and SPL of kernel size (64*64) and stride=1. Detection error probability rate of CIS-Net for S-

UNIWARD at 0.1 bpp is 35.28%, at 0.2 bpp is 26.21%, at 0.3 bpp is 19.64%, at 0.4 bpp is 14.62%, at 0.5 

bpp is 10.73%, and for at 0.1 bpp is 36.82%, at 0.2 bpp is 28.83%, at 0.3 bpp is 22.67%, at 0.4 bpp is 

18.10%, at 0.5 bpp is 14.78%. 

 

 

 



2.2.2 COMPARISON 

 

 Payload-bits per pixel(bpp) 
 

0.1 0.2 0.3 0.4 0.5 

Xu-Net 42.67 
  

19.76 
 

Yedrouj-Net 
 

36.7 
 

22.8 
 

GBRAS-Net 
 

26.4 
 

13.9 
 

Zhu-Net(TLU) 
 

31.6 
 

18.8 
 

Zhu-
Net(ReLU) 

 
28.5 

 
15.3 

 

SiaStegNet 27.01 16.71 11.57 8.11 
 

ReST-Net 34.33 28.65 21.22 14.56 12.07 

IAS-CNN 
 

37.6 
 

24.95 
 

AG-Net 
  

19.34 14.51 10.73 

CIS-Net 35.28 26.21 19.64 14.62 10.73 

TABLE-I (DETECTION ERROR PERCENTAGE FOR S-UNIWARD STEGANOGRAPHY FOR DIFFERENT 
STEGANALYSIS NETWORKS) 

 Payload-bits per pixel(bpp) 
 

0.1 0.2 0.3 0.4 0.5 

Xu-Net 58.44   79.24  
GBRAS-Net  31.5  18.1  
ReST-Net 30.83 22.74 17.62 14.03  

SiaStegNet 37.62 29.36 23.26 18.34 15.46 

AG-Net   22.04 18.05 15.4 

CIS-Net 36.28 28.83 22.67 18.1 14.78 

TABLE-II (DETECTION ERROR PERCENTAGE FOR HILL STEGANOGRAPHY FOR DIFFERENT 
STEGANALYSIS NETWORKS) 

 Payload-bits per pixel(bpp)  
0.1 0.2 0.3 0.4 0.5 

Yedrouj-Net 
 

27.8 
 

14.1 
 

GBRAS-Net 
 

19.7 
 

10.2 
 

Zhu-Net(TLU) 
 

25.7 
 

13.8 
 

Zhu-
Net(ReLU) 

 
23.3 

 
11.8 

 

SiaStegNet 23.84 14.43 11.57 8.11 
 

ReST-Net 
     

IAS-CNN 
 

31.85 
 

19.25 
 

AG-Net 
  

22.43 16.38 14.18 

CIS-Net 29.08 21.03 15.96 12.13 9.3 

TABLE-III (DETECTION ERROR PERCENTAGE FOR WOW STEGANOGRAPHY FOR DIFFERENT 
STEGANALYSIS NETWORKS) 

 



 

 

CHAPTER 2.3: PROPOSED METHOD 

 

2.3.1 PROPOSED METHOD 

In the approach we try to apply steganalysis using Convolutional Neural Networks. So, we started with 

implementing one of the methods available to us form the literature survey to get an idea of working 

of CNNs in the defined domain with some modifications. 

The model the was trained with the dataset discussed in section 2.4. The model accepts images of size 

256x256 so after first layer of convolution 30 matrices each of size 128x128 is generated. These 30 

matrices are fed to the maxpooling layer of kernel size 2x2 reducing the size of the matrices to 62x62 

which are again fed to the next convolution layer and so on, and so forth. Finally, 512 features are 

selected and are given as input to the classification layer of the above CNN model. The classification 

layer has 512 input neurons to accept 512 input features. These 512 neurons are densely connected 

to the single hidden layer having 1024 neurons and since the problem is example of binary 

classification the output layer has 2 neurons which again are connected densely to the hidden layer. 

The hidden layer has ReLU as activation function and the output layer has Softmax as activation 

function. 
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Later, we tried with the concept of transfer learning to implement CNN in the field of steganalysis. We 

have selected VGG19 as the network to classify the images into cover and stego images. Even though 

we were implementing transfer learning we had to make a few adjustments in the pre-trained model. 

Since any CNN has 2 components, one is for feature extraction and the other is for classification VGG19 

can also be broken down into these two components. Conventionally VGG19 is used to classify images 

into category of 1000 classes. But our work is of binary classification, so it is quite evident that we 

have to reduce the size of output layer from 1000 to 2. We kept the feature extracting or the 

convolution layer unaltered. 

 

 

 



Since, we have changed the classifier we have to train this classifier part of the CNN by our training 

samples 

 

2.3.2 TRAINING THE CLASSIFIER 

In both the above networks we have trained the neural network with categorical cross-entropy as loss 

function and used stochastic gradient descent as the optimizer with learning rate of 0.001. 

 

2.4 RESULTS AND DISCUSSION 

 

2.4.1 PREPARATION OF DATASET 

We have used the benchmark dataset BOSSbase(Break Our Steganographic System) as our dataset. It 

has 10,000 grayscale images of size 512x512. The dimension of the image is very high for deep learning 

and we were restricted by the computational power. So, we reduced the dimension of the image to 

256x256. These reduced images were categorized as the cover images. After which we exposed the 

images to different steganographic algorithms- WOW, S-UNIWARD, HUGO with different payload 

capacities. We used 0.1, 0.2, 0.3, 0.4, 0.5 as our payload capacities and hence generated 15 sets of 

stego-images. 

 

Cover                              HUGO_0.1                           Difference 

 

Cover                       S-UNIWARD_0.1                      Difference 



 

Cover                             WOW_0.1                           Difference 

 

2.4.2 RESULTS 

Although we have conducted the experiment with extreme care, there may have been some fault in 

designing the architecture of the CNN, faults in the training dataset which resulted in the poor 

performance of the models.  

The results w.r.t. to the first model for classification between cover image and stego images(5000 

images in total) generated using WOW steganographic algorithm with 0.1 payload are given as follows 

in the form of confusion matrix.  

 

As it is evident that model has classified all the test image into a single class, that is, stego image in 

this case. 

Again, the results w.r.t. to the second model for classification between cover image and stego 

images(1232 images in total) generated using WOW steganographic algorithm with 0.1 payload are 

given as follows in the form of confusion matrix.  

 

As it is evident that model has classified all the test image into both classes with a bias to stego class. 

 

2.4.3 DISCUSSION 

We performed this experiment on a system with configuration of Ryzen 7 3700x CPU, GeForce GTX 

1650 Super GPU and 16 GB RAM. The preparation of dataset of 10,000 BOSSbase images into 

steganographic counterparts using WOW, S-UNIWARD and HUGO algorithms with 0.1, 0.2, 0.3, 0.4, 

and 0.5 embedding rates took about 15 minutes for each using CPU. Thus, taking a total time of about 

15 x 15 (225) minutes in total or 3.75 hours. 



We used GPU for training the models. 

For training of the first model stated in section 2.3.1 we used a total 7500 cover images of 256 x 256 

BOSSbase images and their 7500 WOW steganographic counterpart images with 0.1 payload. For 

15000 train images set in total and 20 epoch sessions the model took 5.33 hours to finish training, and 

the results from remaining 5000 test image set the result of the model was not good, as discussed in 

section 2.4.2. 

For training the second model a total 1847 cover images of 256 x 256 BOSSbase images and their 1847 

WOW steganographic counterpart images with 0.1 payload were used. For 3694 train images set in 

total and 40 epoch sessions the model took 1.33 hours to finish training, and the results from 

remaining 1232 test image set the model showed improvement as discussed in section 2.4.2. 

 

CHAPTER 2.5 CODE 

 

2.5.1 FIRST MODEL 
import numpy as np 
import pickle 
import matplotlib.pyplot as plt 
from sklearn.model_selection import train_test_split 
f=open('arro','rb') 
o=pickle.load(f) 
f.close() 
f=open('arr01','rb') 
s25=pickle.load(f) 
f.close() 
l=[] 
for i in o: 
    l.append(i.reshape((1,1,256,256))) 
l=[] 
for i in o: 
    l.append(i.reshape((1,1,256,256))) 
c=[[0] for i in range(10000)] 
for i in range(10000): 
    c.append([1]) 
c=np.array(c) 
train,test=train_test_split(range(20000)) 
trainx=ln[train] 
testx=ln[test] 
trainy=c[train] 
testy=c[test] 
import torch 
import torchvision 
import torchvision.transforms as transforms 
import torch.nn as nn 
import torch.nn.functional as F 
 



class Net(nn.Module): 
    def __init__(self): 
        super().__init__() 
        self.conv1 = nn.Conv2d(1, 30, 5,padding=2,stride=1) 
        self.pool = nn.MaxPool2d(2, 2) 
        self.conv2 = nn.Conv2d(30, 30, 5) 
        self.conv3=nn.Conv2d(30,32,3) 
        self.conv4=nn.Conv2d(32,64,3) 
        self.conv5=nn.Conv2d(64,128,3) 
        self.pool1=nn.AvgPool2d(6,6) 
        self.fc1 = nn.Linear(512, 1024) 
        self.fc2 = nn.Linear(1024,2) 
 
    def forward(self, x): 
         
        x = self.pool(self.conv1(x)) 
        print("first conv",x.shape) 
        x = self.pool(F.relu(self.conv2(x))) 
        print("second conv",x.shape) 
        x = self.pool(F.relu(self.conv3(x))) 
        print("third conv",x.shape) 
        x = self.pool(F.relu(self.conv4(x))) 
        print("fourth conv",x.shape) 
        x = self.pool1(F.relu(self.conv5(x))) 
        print("fifth conv",x.shape) 
        x = torch.flatten(x, 1) # flatten all dimensions except batch 
        print("total output features after convolution",x.shape) 
        x = F.relu(self.fc1(x)) 
        #print(x.shape) 
        x = F.softmax(self.fc2(x)) 
        #print(x) 
        return x 
 
net = Net() 
net=net.double() 
trainx=torch.from_numpy(trainx) 
testx=torch.from_numpy(testx) 
trainy=torch.from_numpy(trainy) 
testy=torch.from_numpy(testy) 
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') 
trainx.to(device) 
trainy.to(device) 
testx.to(device) 
testy.to(device) 
net.to(device) 
print(device) 
import torch.optim as optim 
 
criterion = nn.CrossEntropyLoss() 
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) 
for epoch in range(20):  # loop over the dataset multiple times 



    print("epoch",epoch) 
    running_loss = 0.0 
    for i in range(len(train)): 
        print(i) 
        # get the inputs; data is a list of [inputs, labels] 
        # zero the parameter gradients 
        optimizer.zero_grad() 
        # forward + backward + optimize 
        outputs = net(trainx[i].double().to(device)) 
        loss = criterion(outputs.to(device), trainy[i].long().to(device)) 
        loss.backward() 
        optimizer.step() 
        # print statistics 
        running_loss += loss.item() 
        if i % 2000 == 1999:    # print every 2000 mini-batches 
            print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}') 
            running_loss = 0.0 
print('Finished Training') 
res=[] 
for i in testx: 
    output=net(i.double().to(device)) 
    print(output) 
    res.append(torch.max(output,1).indices) 
res=torch.tensor(res) 
res=res.numpy() 
from sklearn.metrics import confusion_matrix as cf 
m=cf(res,testy) 
m 
 

2.5.1 SECOND MODEL 
import numpy as np 
import pickle 
from sklearn.utils import shuffle 
import matplotlib.pyplot as plt 
from sklearn.model_selection import train_test_split 
f=open('arro','rb') 
o=pickle.load(f) 
f.close() 
f=open('arr01','rb') 
s25=pickle.load(f) 
f.close() 
l=[] 
for i in o[:2463]: 
    i=i/255 
    l.append(i.reshape((1,1,256,256))) 
l=np.array(l) 
x1,y1=train_test_split(l) 
l1=[] 
for i in s25[:2463]: 
    i=i/255 



    l1.append(i.reshape((1,1,256,256))) 
l1=np.array(l1) 
l1.shape 
x2,y2=train_test_split(l1) 
train=np.concatenate((x1,x2),axis=0) 
train.shape 
test=np.concatenate((y1,y2),axis=0) 
c=[0 for i in range(1847)] 
for i in range(1847): 
    c.append(1) 
c=np.array(c) 
trainx,trainy=shuffle(train,c) 
c1=[0 for i in range(len(y1))] 
for i in range(len(y1)): 
    c1.append(1) 
c1=np.array(c1) 
testx,testy=shuffle(test,c1) 
import torch 
from torchvision.models import vgg19 as v 
from torch import nn 
import torchvision 
import torch.nn.functional as F 
trainx=torch.from_numpy(trainx) 
testx=torch.from_numpy(testx) 
trainy=torch.from_numpy(trainy) 
testy=torch.from_numpy(testy) 
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') 
trainx.to(device) 
trainy.to(device) 
testx.to(device) 
testy.to(device) 
print(device) 
class ll(nn.Module): 
    def __init__(self): 
        super().__init__() 
        self.conv1=nn.Conv2d(1,3,1,padding=1,stride=1) 
    def forward(self,x): 
        x=self.conv1(x) 
        return x 
class classifier(nn.Module): 
    def __init__(self): 
        super().__init__() 
        self.fc1 = nn.Linear(25088, 1024) 
        self.fc2=nn.Linear(1024,512) 
        self.fc3 = nn.Linear(512,2) 
    def forward(self,x): 
        x = torch.flatten(x, 1) 
        x = F.relu(self.fc1(x)) 
        x=F.relu(self.fc2(x)) 
        x = F.sigmoid(self.fc3(x)) 
        return x 



cl=classifier()   
m=v(pretrained=True) 
feature=m.features 
feature.eval() 
a=m.avgpool 
ft=ll().float() 
for parameter in feature.parameters(): 
    parameter.requires_grad=False 
feature.to(device) 
a.to(device) 
ft.to(device) 
cl.to(device) 
import torch.optim as optim 
 
criterion = nn.CrossEntropyLoss() 
optimizer = optim.SGD(cl.parameters(), lr=0.001, momentum=0.9) 
for epoch in range(40):  # loop over the dataset multiple times 
    print("epoch",epoch) 
    running_loss = 0.0 
    for i in range(len(train)): 
        # get the inputs; data is a list of [inputs, labels] 
        # zero the parameter gradients 
        optimizer.zero_grad() 
        # forward + backward + optimize 
        outputs = cl(a(feature(ft(trainx[i].float().to(device))))) 
        loss = criterion(outputs,torch.tensor([trainy[i]]).long().to(device)) 
        loss.backward() 
        optimizer.step() 
        # print statistics 
        running_loss += loss.item() 
        if i % 2000 == 1999:    # print every 2000 mini-batches 
            print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}') 
            running_loss = 0.0 
print('Finished Training') 
res=[] 
for i in testx: 
    output=cl(a(feature(ft(i.float().to(device))))) 
    print(output) 
    res.append(torch.max(output,1).indices) 
res=torch.tensor(res) 
res=res.numpy() 
from sklearn.metrics import confusion_matrix as cf  
m=cf(res,testy) 
m 
 
 

CHAPTER 2.6 CONCLUSION 
In this paper we tried extensively to get rid of any separate feature extracting methodologies like 
PCA or Haralick as used in past, and tried to use the full strength of Convolutional Neural Networks 
for feature extraction and classification. But due to some irremovable discrepancy in the designed 
model we achieved worse detection accuracy rates than previous model discussed in section 1.3. 



Thus we proceeded with transfer learning to actively use the parameters of pre-trained model 
VGG19, but although it showed improvement in classifying but the detection accuracy was not 
mention worthy. Thus, the error from our designed model could not be traced. Apart from that, it 
can be observed that to gain advantage of Convolutional Neural Networks we need high 
computational power to effectively reduce training time and perform more epochs and reduce loss, 
which in our case was limited thus giving bad results and efficiency. In future, we aim to trace the 
error in our designed model and perform  
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ABSTRACT 

 

Tropical cyclones (TCs) are among one the deadliest natural 

disasters which affect millions of people living in coastal areas 

around the world. In the early days, limited tools were available to 

analyze the huge meteorological data that were generated 

continuously over time. With the advent of computing power and 

artificial intelligence-based techniques, it is now possible to predict 

the origin, landfall and intensity of the tropical cyclone through 

collaborative efforts of the resources available in countries around 

the world. Real-time data analysis plays a major role. From early 

simulation models built upon the hydrological and satellite data to 

current sophisticated data-driven deep learning models are 

continuously evolving to serve the human civilization to combat 

cyclones by providing accurate early warning systems and making 

efficient disaster preparedness. This paper classifies the cyclonic 

systems into 8 categories of different intensities from the HURDAT 

2nd generation dataset. A reduction in resources wasted to figure out 

the intensity/category is attempted using machine learning 

algorithms from the state of precursor data. An accuracy of 91% is 

achieved by KNN imputing and 87% is achieved by Mean imputation 

from a dataset of 6000 samples and 22 features. 
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INTRODUCTION: 

Tropical Cyclone is one of the major consequences of climate 
change in recent years. With ever-increasing global temperatures, 
the forecasting of major weather events has become more 
unpredictable leading to major loss of lives and property. Weather 
prediction is mainly performed by two approaches - model-driven 
and data-driven. Several authors have tried to predict tropical 
cyclone formation using deep neural networks to classify or predict 
cyclonic activities from beforehand.  

However, with the ever-increasing complexity of weather data, 
models have become more expensive and leave a major carbon 
footprint on the planet hence contributing to climate change. 

Our approach in this paper is to clean the data using EDA and 
hence classify using Ensemble learners and machine learning 
models good for multi-class classification which is less compute-
heavy than neural networks. 
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RELATED WORKS: 

Wang et al. (2020) [1] stated a CNN-based tropical cyclone model that can extract 
spatial features from images taken from the Shanghai Typhoon Institute of the 
China Meteorological Administration (CMA), using automatic computation of 
features to improve detection or classification. The data augmentation method was 
used by adding Gaussian noise to every image with a mean value of 0 and a 
variance of 0.0096. Two-dimensional AlexNet is commonly used to study 
translation-invariant features of the input data. The author used a shallow network 
where kernels fetch the information on each input TCs from the pixel 
neighbourhood in the spatial Centre of the cube. ReLU activation function and 
ADAM optimizer were used along with normalized input data. The accuracy for the 
decision tree as well as TC-3DCNN was computed. For classification criteria 
between 5 to -5, the decision tree gives an accuracy of 90.2% whereas TC-3DCNN 
showed 94.9% accuracy. For, criteria between 2.5 to -2.5 accuracies of 81.5% and 
91.5% are observed for decision tree and TC- 3DCNN respectively. Similarly, for 
criteria 0, it gives 77.4% and 83% accuracies for the decision tree and TC - 3DCNN 
respectively. 

Liu et al. (2016) [2] presented the first climatic CNN model that was used in 
conjunction with Bayesian-based hyper-parameter optimization schemes on 
large meteorological datasets to find anomalies and predict extreme weather 
events. The accuracy achieved is in the range of 89-99%. Here, Tropical 
Cyclones, Atmospheric Rivers, and Weather Fronts have been considered 
events of extreme weather conditions. The Deep CNN model leverages AlexNet 
and has 4 learnable layers, including 2 convolutional layers and 2 fully connected 
layers. The model is constructed with NOEN, an open-source Python library. The 
datasets used for the experiment are CAM5.1 historical run, ERA-Interim 
reanalysis, 20-century reanalysis, and NCEP-NCAR reanalysis.  

Kar and Banerjee (2021) [3] modelled cloud intensity machine learning-based 
classification techniques for TC using feature extraction and pattern matching 
steps. Initially, the images are resized from 1024x1024 to 256x256 pixels and 
then find the region of interest (ROI) using Euclidean distance(ED) and 
Manhattan distance (MD) which former was found to be more effective. Then a 
rotation-invariant image was formed by rotating the original image by 90, 180, 
and 270 degrees and all four images were combined. (COG). The feature 
extraction involved computation of the Centre of gravity (COG), ED, normalized 
ED, variance, density, eccentricity, area of TC, the zero-order moment of TC in 
ROI, and finally the entropy. For feature extraction from 600 images Weka data 
mining tool was used. The correctly classified instances of the above-mentioned 
models in 10-fold cross-validation with 66%, 75%, and 85% splits are as follows. 
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For simple 10 - fold cross-validation the Naïve Bayes, Support Vector Machine 
(SVM), Random Tree, Logistic Model Tree and Random Forest gives accuracies 
of 36.5%, 49.8%, 72.5%, 76.6%, and 84.1% respectively. For 66-34% training-
testing split with 10-fold cross-validation accuracies reported were 39.8%, 40.1%, 
67.4%, 70.5%, and 80.1% respectively. For 75-25% training-testing split with 10-
fold cross-validation accuracies found were 36%, 46.6%, 66%, 67.3%, and 
84.6% for the same models. Finally, if 85-15% split with 10-fold cross-validation 
accuracies reported were 33.3%, 45.5%, 71.1%, 75.5% and 84.6% respectively. 
Random forest had performed the best. 

According to Vecchi and Soden (2007) [4], the correlation between tropical 
cyclones and global warming is widely debated. Authors used climate models 
and observational reconstructions to find a relationship between changes in sea 
surface temperature and tropical cyclone ‘potential intensity’—a measure that 
provides an upper bound on cyclone intensity and can also reflect the likelihood 
of cyclone development. Results indicate that although tropical Atlantic surface 
temperatures are at a record high, the Atlantic potential intensity probably 
peaked in the 1930s and 1950s, and recent values are near the historical 
average. The outcomes show that the response of tropical cyclone activity to 
natural climate variations, which usually involve localized changes in sea surface 
temperature, may be larger than the response to the more uniform patterns of 
greenhouse-gas-induced warming. 

Emanuel (2005) [5] explained that the destructive potential of a cyclone is often 
underestimated and more effort is put into predicting the path or frequency of 
cyclones. A necessary Potential Destructiveness Index (PDI) is of more concern 
as studies show there is an upward trend of it which correlates to loss of coastal 
life and property. Prediction of 8-12% rise in PDI of a cyclone, considering factors 
like tropical ocean temperature, increase in storm lifetime does not match when 
data is reconstructed using Hadley Centre Sea Surface Temperature and 
averaged reanalysis data over the same tropical areas giving rise to a 40% 
increase in PDI. A sharp increase in PDI after the 1970s indicates global 
warming along with vertical wind shear, sub-surface temperatures, and many 
other missing variables to play a part in such an unprecedented increase.  

Matsuoka et al. (2018) [6] proposed A binary classification using CNN feeding on 
2D Outgoing Longwave Radiation data classifying “developing tropical cyclones” 

from “non-developing depressions” and “precursors”. Training data from 1979 to 

1998 were equally divided into 50,000 negative (non-TCs) and positive (TCs and 
precursors) data each, generating ten deep CNNs by shuffling the data. 
Successfully predicting TCs in the western North Pacific from July to November 
with a detection probability of 79.9-89.1% also increases the False alarm ratio by 
32.8-53.4%. Accuracy of 91.2%, 77.8%, and 74.8% for precursors was achieved 
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for 2,5, and 7 days before their genesis suggesting the promise of a data-driven 
approach for analyzing tropical cyclogenesis. 

Meng et al. (2022) [7] described a method for predicting TC by directly 
forecasting the Passive Microwave Rainfall (PMR) estimation from satellite 
infrared (IR) images of TC. There are many related studies to convert IR signals 
into surface precipitation rates by statistical and machine learning techniques 
such as the Persian algorithm- which used artificial neural network (ANN) 
techniques to establish the relationship between cloud-top bright temperature 
and surface precipitation rate. Deep learning technique – which uses a slacked 
noise reduction self-encoder-based ANN to give an estimation of IR images and 
water vapour precipitation. Here TCR generative adversarial networks (GAN) 
technique is used to estimate the prediction of IR to PMR which is essentially an 
image-to-image translation. The generator predicts the PMR image with 
asymmetric structure and then uses the discriminator to determine whether the 
PMR image is similar to the IR image, or not. Well-known metrics Peak Signal-to-
Noise Ratio (PSNR), Root Mean Square Error (RMSE), Pearson Correlation 
Coefficient (CC), and Structure Similarity Index Measure (SSIM) were used to 
measure the performance of TCR-GAN. Grid-Sat and CMORPH datasets were 
used for the experiment. It was compared to the advanced models Cycle-GAN, 
Pix2Pix and Res-Pix2Pix. All the models are trained with 100 epochs using the 
Adam optimizer. For Cycle-GAN the PSNR, RMSE, CC, and SSIM were 9.781, 
7.433, 0.096, and 0.397 respectively. For Pix2Pix the values are 14.080, 6.861, 
0.596, and 0.530. With Res-pix2Pix the values are 14.376, 6.848, 0.623, and 
0542. Finally, for TCR-GAN the values are 14.480, 6.705, 0.637, and 0.550 
making it the best model among these four.  

Srinivas et al. (2013) [8] proposed a mesoscale model Advanced Research 
Weather (ARW) which amalgamated compressible non-hydrostatic equations 
and terrain conditions. The outer part of two-way interactive nested domains 
covers a larger area of 27km and the inner part has a 9km resolution with the 
minimum grid. The terrain data is collected from the US Geological Survey 
Topography. To predict TCs planetary boundary layer (PBL), surface fluxes, 
cumulus convection (CC), and cloud microphysics (CMP) for conversion 
schemes, vertical fluxes as updraft and downdraft outside the cloud as per the 
Grell scheme were used. The KF scheme follows a Lagrangian method with 
moist updraft and downdraft. Other schemes like CMP and WSM3 use the 
prognostic equation for these purposes. Here, for all the cyclones CSLP is much 
errorless as compared to the KF scheme. The time variation of MSW shows the 
higher winds with KF and GDE schemes. Updraft, downdraft, and shallow 
convection are related to increasing the performance of KF. LIN microphysics is 
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preferred with the combination of KF to reduce the track errors and achieve the 
same intensity as WSM6 and better than WSM3. 

Lian and Dong (2020)[9] experimentally fused a data preprocessing layer, an AE 
(Auto Encoder) layer, and a GRU (Gated Recurrent Unit) layer with a customized 
batch process to train a model on Western North Pacific (WNP) Ocean Best 
Track Data from 1945-2017 provided by the Joint Typhoon Warning Center 
(JTWC). The dataset was randomly split into 9:1 ratio for training and testing 
respectively, within which the training set was further split into 7:3 ratio for testing 
and validation resulting in 54,981 tropical cyclone records for training, and 6108 
records for testing. It outperformed the Numerical Weather Prediction (NWP) 
model by about 15%, 42%, and 56% in 24, 48, and 72-hour forecasts, and 27%, 
13%, 17%, and 17% better than RNN, AE-RNN, GRU, and LSTM, respectively, 
in 24-hour forecasts. 

Chen et al.[10] used semi-supervised model with SVM, Back Propagation Neural 
Network (BPNN) and CNN's including LeNet, GoogLeNet, and ResNet etc. using 
feature extraction, semi-supervised CNN and training set update. 2 years data of 
from the FY-4 meteorological satellite was collected and preprocessed using 
cropping, and augmentation. Data used were 5243 sets of MSIs/cyclones with 14 
bands with a resolution of 4000 m. PCA features were extracted and fed to the 
proposed semi-supervised CNN with many unlabeled samples. First CNN maps 
the features and generates feature - label pair, followed by the second CNN fine-
tuned by feature - label pair of CNN1 and remaining samples are added to CNN2 
to predict the Labels. SGD used for optimization, Histogram distance and 
Euclidean distance were combined and he training set is updated. With only 5% 
of labeled samples the accuracy for SVM, BPNN, MLR, k-NN, CNN and 
proposed method were 67.13%, 69.48%, 63.49%, 50.08%, 64.62%, and 77.05% 
respectively. Experimental results reported for 10%,15%,20%,25% and 30% 
labelled sample the accuracy 88.92%,94.68%,94.56%,95.59% and 96.69% 
respectively which is superior with respect other models mentioned earlier. 

 

 

COMPARISON OF TECHNIQUES 

In this section we discuss the methods based on their model architecture, 
dataset used for the experiments, features used to model input, pre-trained 
models used, the different training parameters used and finally their 
performances metrics. The details are given in Table-1. 
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 Architecture    Dataset used     Feature extraction   Pre-trained   Training    Accuracy  and 

                         model used   parameter    other measures 
                                  

[1] 3D-CNN    European Center for  Weighted    Regression,   TC-   Epochs 50,    83.0%  when 
      Medium-Range  combination of   3DCNN      Adam Optimizer intensity Δ>0  
      Weather  Forecasts  every input.                     
      (ECMWF)                                   
                                 

[2] AlexNet with 2 CNN  CAN  5.1 Historical  NA        AlexNet with   VBOT, UBOT, 89-99% accuracy 
 layers, Max pooling  Run, ERA-INT               custom layers   T200, TMQ, V850,     
 later and NOEN  RIM  Reanalysis,  20                   U850        
 library     Century  Reanalysis,                   Atmospheric river -     
      NCEP-NCAR                      TNQ,  LAND  SEA     
      Reanalysis                         MASK        

                                 
[3] Cloud  intensity  Meteosat-8  and  COG,  Euclidean   Naive Bayes,   NA    86.66%   

 classification    Meteosat-7  data  of  Distance (ED)    SVM, Random             
                                       

 techniques    the US    naval   Mean ED       Tree, Logistic             
                                        

      Research        Find   variance,   Model Tree,             
                                          

      Laboratory.       density,     DC,   Random Forest               
                                         

               entropy                          
                                 
                                          

[4] Climate models and  Reanalysis data from   NA         NA       NA      Local sea surface 
 observational    ERA-5                                temperature change 
 reconstructions                                   has more impact on 
                                      TC    
                            
                                          

[5] Numerical Simulation  Daily   averaged   Sea    Surface   Numerical model    NA      40% increase in 
                                

      Reanalysis  data  and   Temperature, wind                place of  expected 
                                 

      Hadley Center SST   shear, subsurface                10% PDI   
                                     

      data         temperature                      

                          
                                          

[6] 2D deep CNN   30 years  data   Deep convective   NA       Adamoptimizer,  91% (2 days prior), 
                           

 (4 convolutional  produced by NICAM   circulation            Batch     77.8% (5 days 
                                 

 layers, 3 pooling  with 14  km                    Normalization  prior),74.8% (7 days 
                                 

 layers, and 3 fully  horizontal resolution                    100000 data Epoch:  prior)    
                                      

 connected layers)                             19-46         
                   
                                          

[7] TCR-GAN,  (PMR  to  4579 pairs of images   Random   cropping,   UNet, Pix2Pix,   100  epochs, Adam  PSNR=14.480,  
 IR mapping)    from    Tropical  Horizontal    Res-Pix2Pix   optimizer,    RMSE=6.705,  
      Cyclone   IR to  mirroring           momentum    CC=0.637, AND 
      Rainfall Prediction                   beta1=0.5    SSIM=0.550   
      (TCIRRP)                                   
                               

[8] ARW version 3.2  From IMD reports  NA        NA      NA    About 67% of the 
 Mesoscale model   and Tropical Rainfall                         cyclones  are 
      Measuring   Mission                         simulated  with 
      (TRMM)   satellite                         mean errors.   
      rainfall datasets                             
                          

[9] AutoEncoder  with  Western    North  ANN generated          LR=0.001,    27%,13%, 17%, and 
 GRU     Pacific    (WNP)            NA      batch=64,loss=MSE 17% better  than 
      Ocean Best Track                         RNN, AE-RNN, 
      Data from  1945-                         GRU, and LSTM 
      2017                                    
               

[10] Semi supervised deep  FY-4 meteorological  Cropping, Data   LeNet, ResNet,   SGD optimizer 77.05 - 95.59% for 
 network    satellite data      augmentation    GoogleNet         5-30% split   
                                          

Table-1: Comparative study of the methods on classification of tropical cyclone 
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PROJECT OBJECTIVE: 

This project truncates 26000 samples to roughly 6000 samples to 
remove maximum missing values. Afterwards, we perform various 
data augmentation techniques and then machine learning 
algorithms to multiclassify tropical cyclones from subtropical 
cyclones and regular depressions. 

Building a classifier using machine learning can be a difficult job if 
the dataset used is not in its best format or if it has a considerable 
amount of missing values or if it is not correctly interpreted. 
Therefore a considerable portion of this work will be spent on 
EDA(Exploratory Data Analysis) to fine-tune the dataset. Analysing 
data from HURDAT2 (HURricane DATa 2nd generation) - is based 
upon the “best tracks” available from the b-decks in the Automated 
Tropical Cyclone Forecast (ATCF – Sampson and Schrader 2000) 
system database and is described below. Reasons for the revised 
version include: 

1) inclusion of non-synaptic (other than 00, 06, 12, and 18Z) best 
track times (mainly to indicate landfalls and intensity maxima) 

2) inclusion of non-developing tropical depressions; and  

3) inclusion of best track wind radii. 

 

PROJECT SCOPE: 

This project assumes that the dataset collected is representative of 
all types of TC formations around the world. 

The scope of this project is confined only to classifying multiple 
types of cyclonic activity over the Pacific based on previously 
formed cyclones. This paper will not contain any precise 
conclusion. 
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DATASET : 

We have used the HURDAT2 dataset provided by the National 
Hurricane Center (NHC) and the Central Pacific Hurricane Center 
(CPHC).(NHC’s area extends from the North and Central America 

west coast westward to 140 degree W and CPHC’s area extends 

from 140 to 180 degree W. 

TD – Tropical cyclone of tropical depression intensity (< 34 knots) 

TS – Tropical cyclone of tropical storm intensity (34-63 knots) 

HU – Tropical cyclone of hurricane intensity (> 64 knots) 

EX – Extratropical cyclone (of any intensity) 

SD – Subtropical cyclone of subtropical depression intensity (< 34 
knots) 

SS – Subtropical cyclone of subtropical storm intensity (> 34 knots) 

LO – A low that is neither a tropical cyclone, a subtropical cyclone, 
nor an extratropical cyclone (of any intensity) 

DB – Disturbance (of any intensity) 

Original dataset without truncating. 
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Pacific dataset  after  truncating. 

 

 

Atlantic dataset  after  truncating. 
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EXPLORATORY DATA ANALYSIS (EDA): 

The target feature is Status. Here, we classified the cyclone based 
on feature shown below:-   

 

 

[DATA TRANSFORMATION] 

For missing value treatment we have used KNN imputation and 
MEAN imputation and to transform the categorical data to 
numerical data we have used label encoder. 
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Top ten cyclones which occurred the maximum number of times: 

 

 

Frequency of Hurricanes by month: 

 

 

Yearwise frequency of hurricanes: 
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Frequency of cyclones by category: 

 

 

 

[FEATURE EXTRACTION] 

For feature extraction we have done Random Forest Classifier to 
extract the important features. Here we, consider top 5 feature to 
train our models. 
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We rectify the skewness of the first 5 features applying log, sqrt and 
cbrt functions. 

 

Correcting skewness for ‘Latitude’. 

 

 

Correcting skewness for ‘Maximum Wind’.  
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Correcting skewness for ‘Longitude’.  

 

Correcting skewness for ‘Minimum Pressure’.  

  

 

Correcting skewness for ‘High Wind NE’.  
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PROPOSED METHOD :  

After performing EDA, we impute the missing values once with mean and then 
with KNN and run the following algorithms on each type. 

1. Decision Tree 
2. Random Forest 
3. Naive Bayes 
4. SVM 
5. KNN Classification 

 

 

 

RESULTS AND ANALYSIS :  

 

[FOR KNN Imputation( With Top 5 features)] 

 

Decision Tree 

Accuracy score for Decision Tree is : 0.8899895724713243 

Recall score for Decision Tree is : 0.8899895724713243 

Precision score for Decision Tree is : 0.880835452330819 

 

Random Forest 

Accuracy:  0.9251184834123223 

Recall:  0.9251184834123223 
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Precision:  0.9247560381579104 

 

Naive Bayes Algorithm. 

Accuracy (Naive Bayes): 0.9251184834123222 

Recall (Naive Bayes): 0.9251184834123222 

Precision (Naive Bayes) : 0.9247560381579105 

 

Support Vector Algorithm. 

Accuracy  0.7979987492182614  

Recall:  0.7979987492182614  

Precision:  0.8516947339916375 

 

KNN Classification  

Accuracy : 0.9161137440758293 

Recall : 0.9161137440758293 

Precision :0.9135160676490003 

 

 

[ For MEAN Imputation(with top 5 features) ] 

 

Decision Tree  

Accuracy score  : 0.9036455888106415 

Recall score : 0.9036455888106415 

Precision score: 0.896496038573900 
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Random Forest : 

Accuracy: 0.8744075829383886 

Recall: 0.8744075829383886 

Precision: 0.8733078500159847 

 

Naive Bayes Algorithm  

Accuracy (Naive Bayes): 0.6596302816901407 

Recall (Naive Bayes): 0.6596302816901407 

Precision (Naive Bayes) : 0.6087871417773254 

 

Support Vector Algorithm 

Accuracy 0.6541588492808005 

Recall: 0.6541588492808005 

Precision: 0.6111898281406157 

 

KNN Classification (Top 5 features) 

Accuracy : 87.44075829383885 

Recall : 87.44075829383885 

Precision : 87.33078500159847 

 
For KNN Imputation we the highest accuracy for random 
forest model of 92.5%. 

 

For Mean Imputation we the highest accuracy for random 
forest model of 98.3%. 
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CODE :  

 

from google.colab import files 

uploaded = files.upload() 

 

# Import pandas. 

import pandas as pd 

# Import numpy. 

import numpy as np 

# Import matplotlib. 

import matplotlib.pyplot as plt 

# Import seaborn. 

import seaborn as sns 

# Import regular expression. 

import re 

# import datetime. 

import datetime as dt 

 

# Import the data. 

df = pd.read_csv('Pacific_tranc.csv') 
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# Convert date column as datetime. 

df['Date'] = pd.to_datetime(df['Date'] , format= '%Y%m%d') 

 

# I want to create columns Latitude Hemisphere and Longitude 
Hemisphere with code 0 = N , 1 = S & 0 = E , 1 = W. 

def hemisphere(coord): 

        hem = re.findall(r'[NSWE]' , coord)[0] 

        if hem == 'N' or hem == 'E': 

            return 0 

        else: 

            return 1 

 

# Creating the column Latitude_Hemisphere.     

df['Latitude_Hemisphere'] = df['Latitude'].apply(hemisphere) 

df['Longitude_Hemisphere'] = df['Longitude'].apply(hemisphere) 

df['Latitude_Hemisphere'] = 
df['Latitude_Hemisphere'].astype('category') 

df['Longitude_Hemisphere'] = 
df['Longitude_Hemisphere'].astype('category') 

 

# Convert the latitude and longitude Column to numeric type. 

df['Latitude'] =  df['Latitude'].apply(lambda x: re.match('[0-9]{1,3}.[0-
9]{0,1}' , x)[0]) 
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df['Longitude'] =   df['Longitude'].apply(lambda x: re.match('[0-
9]{1,3}.[0-9]{0,1}' , x)[0]) 

 

 

 

df.head(10 

        ) 

 

 

df =  df[['ID', 'Name', 'Date', 'Time', 'Event', 'Status', 'Latitude', 
'Latitude_Hemisphere' ,  

       'Longitude', 'Longitude_Hemisphere' ,'Maximum Wind', 
'Minimum Pressure', 'Low Wind NE', 

       'Low Wind SE', 'Low Wind SW', 'Low Wind NW', 'Moderate 
Wind NE', 

       'Moderate Wind SE', 'Moderate Wind SW', 'Moderate Wind 
NW', 

       'High Wind NE', 'High Wind SE', 'High Wind SW', 'High Wind 
NW']] 

 

# Change all time to format HHMM. 

df['Time'] = df['Time'].astype('object') 

def hhmm(time): 

    time = str(time) 
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    digits = re.findall(r'\d', time) 

    t = '' 

    if len(digits) == 1: 

        t ='0{i}00'.format(i =time) 

    elif len(digits) == 2: 

        t = '{i}00'.format(i =time) 

    elif len(digits) == 3: 

        t = '0{i}'.format(i =time) 

    else: 

        t = time 

    return t 

# Apply the function. 

df['Time'] = df['Time'].apply(hhmm) 

 

# Convert the column into Datetime. 

df['Time'] = pd.to_datetime(df['Time'] , format='%H%M').dt.time 

 

 

# Convert the status column to categorical. 

df['Status'] = df['Status'].astype('category') 

 

data = df.drop(columns = ['ID' , 'Event']) 
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# The missing values are given by -999. So , we need to fill them 
appropriately. 

 

# Show the count of missing values and fill them with mean. 

for column in df.columns: 

    missing_cnt = df[column][df[column] == -999].count() 

    print('Missing Values in column {col} = '.format(col = column) , 
missing_cnt ) 

    if missing_cnt!= 0: 

        mean = round(df[column][df[column] != -999 ].mean()) 

        index = df.loc[df[column] == -999 , column].index 

        df.loc[df[column] == -999 , column] = mean 

         

 

 

data.Status.unique() 

data.columns 

col=[] 

for column in data.columns: 

    missing_cnt = data[column][data[column] == -999].count() 

    if missing_cnt >0: 

      col.append(column) 
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    print('Missing Values in column {col} = '.format(col = column) , 
missing_cnt ) 

     

 

 

uniqueColumn=data.Status.unique() 

 

slicedata=data.loc[:,"Status":] 

slicedata 

 

 

from sklearn import preprocessing  

  

# label_encoder object knows how to understand word labels. 

label_encoder = preprocessing.LabelEncoder() 

slicedata.head()  

# Encode labels in column 'Status'. 

# 

slicedata['Status']= label_encoder.fit_transform(slicedata['Status']) 

 

slicedata.to_csv('FillupByKNN.csv',index=False)   

slicedata.astype('float') 
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for column in slicedata.columns: 

  print(column,type(column)) 

 

 

# The missing values are given by -999. So , we need to fill them 
appropriately. 

from sklearn.model_selection import train_test_split 

from sklearn.impute import KNNImputer 

from sklearn.utils import shuffle 

 

#Using KNN imputatuion, we will fill the data 

newdf={} 

uniqueColumn=slicedata.Status.unique() 

#Replacing -999 to nan 

for i in slicedata.columns: 

  for j in range(slicedata.shape[0]): 

    if slicedata.loc[j,i] == -999: 

      print(i,j,'True') 

      slicedata.loc[j,i]=np.nan 

 

data.to_csv('FillupByMean.csv',index=False) 

for cyclonetype in uniqueColumn: 
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  newdf[cyclonetype]=pd.DataFrame(slicedata.loc[slicedata['Status'] 
== cyclonetype]) 

   

knn=KNNImputer(n_neighbors=10) 

for cyclonetype in uniqueColumn: 

  knn.fit(newdf[cyclonetype]) 

  
newdf[cyclonetype]=pd.DataFrame(knn.transform(newdf[cyclonetyp
e]),columns=newdf[cyclonetype].columns) 

frames=[newdf[0],newdf[1],newdf[2],newdf[3],newdf[4],newdf[5],ne
wdf[6],newdf[7],newdf[8],newdf[9],newdf[10]] 

newdata=pd.concat(frames) 

newdata=shuffle(newdata) 

newdata.to_csv('Fillupdata.csv',index=False) 

newdf[0]   

 

 

 

sns.distplot(df['Maximum Wind'],hist=True,color='red') 

 

newdata['RMaxWind']=np.log(newdata['Maximum Wind']) 

sns.distplot(newdata['RMaxWind'],hist=True,color='green') 
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sns.distplot(df['Longitude'],hist=True,color='red')         

 

newdata['RLong']=np.cbrt(newdata['Longitude']) 

sns.distplot(newdata['RLong'],hist=True,color='green') 

 

sns.distplot(df['Latitude'],hist=True,color='red')         

 

newdata['RLat']=np.sqrt(newdata['Latitude']) 

sns.distplot(newdata['RLat'],hist=True,color='green') 

 

 

sns.distplot(df['Minimum Pressure'],hist=True,color='red')  

 

newdata['RMinPressure']=np.sqrt(newdata['Minimum Pressure']) 

sns.distplot(newdata['RMinPressure'],hist=True,color='green') 

 

sns.distplot(newdata['High Wind NE'],hist=True,color='red')  

 

 

 

newdata['RHighWindNE']=np.cbrt(newdata['High Wind NE']) 

sns.distplot(newdata['RHighWindNE'],hist=True,color='green') 
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sns.distplot(newdata['Low Wind NE'],hist=True,color='red') 

 

newdata['LWNE']=np.cbrt(newdata['Low Wind NE']) 

sns.distplot(newdata['LWNE'],hist=True,color='green') 

 

sns.distplot(newdata['Low Wind SE'],hist=True,color='red') 

 

newdata['LWSE']=np.cbrt(newdata['Low Wind SE']) 

sns.distplot(newdata['LWSE'],hist=True,color='green') 

 

sns.distplot(newdata['Low Wind SW'],hist=True,color='red') 

 

newdata['LWSW']=np.cbrt(newdata['Low Wind SW']) 

sns.distplot(newdata['LWSW'],hist=True,color='green') 

 

sns.distplot(newdata['Low Wind NW'],hist=True,color='red') 

 

newdata['LWNW']=np.cbrt(newdata['Low Wind NW']) 

sns.distplot(newdata['LWNW'],hist=True,color='green') 

 

sns.distplot(newdata['Moderate Wind NE'],hist=True,color='red') 
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newdata['LWNW']=np.cbrt(newdata['Low Wind NW']) 

sns.distplot(newdata['LWNW'],hist=True,color='green') 

 

 

 

Low Wind SW <class 'str'> 

Low Wind NW <class 'str'> 

Moderate Wind NE <class 'str'> 

Moderate Wind SE <class 'str'> 

Moderate Wind SW <class 'str'> 

Moderate Wind NW <class 'str'> 

High Wind NE <class 'str'> 

High Wind SE <class 'str'> 

High Wind SW <class 'str'> 

High Wind NW <class 'str'> 

 

## Statististical Analysis of the data. 

 

## Top ten cyclones which occured the maximum number of times. 
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# Find the top ten cyclones which have occured the maximum 
number of times. 

lst = [x.strip() for x in data.groupby('Name').count().sort_values(by = 
'Date' , ascending = False).index[:10]] 

val = data.groupby('Name').count().sort_values(by = 'Date' , 
ascending = False)[:10]['Date'].values 

font = {'family' : 'monospace', 

        'weight' : 'bold', 

        'size'   : 22} 

plt.rc('font', **font) 

fig , ax = plt.subplots() 

fig.set_size_inches(12,12) 

ax.pie(  labels = lst , x = val , autopct='%.1f%%' , explode = [0.1 for 
x in range(10)]) 

plt.title(' Top Ten Hurricanes by Frequency.' , fontsize = 30) 

plt.show() 

 

## Frequency of Hurricanes by Month. 

 

data['Month'] = data['Date'].apply(lambda x: x.month) 

data['Year'] = data['Date'].apply(lambda x: x.year) 

mnt = ['Jan' , 'Feb' , 'Mar' , 'Apr' , 'May' , 'June' , 'July' , 'Aug' , 
'Sep','Oct' , 'Nov' , 'Dec'] 

temp = data.groupby('Month').count() 
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temp.loc[4] = 0 

temp = temp.sort_values(by = 'Month' , ascending = False) 

font = {'family' : 'monospace', 

        'weight' : 'bold', 

        'size'   : 22} 

plt.rc('font', **font) 

plt.figure(figsize = (10,10)) 

sns.set_style("whitegrid") 

ax = sns.barplot(x = temp.index , y = 'Date' , data=temp , palette = 
'RdBu' ) 

plt.xticks([0,1,2,3,4,5,6,7,8,9,10,11] , mnt , rotation = 90) 

plt.ylabel('Frequency') 

plt.title('Frequency of Cyclones by Month.') 

 

 

# Year-Wise Frequency of Hurricanes. 

temp = data.groupby('Year').count().sort_values(by = 'Month' , 
ascending = False) 

plt.figure(figsize= (12,12)) 

sns.lineplot(x = temp.index , y = 'Month' , data = temp , label = 
'Frequency') 

plt.ylabel('Frequency') 

plt.title('Year Wise Frequency of Hurricanes.') 
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plt.show() 

 

# Probability Distribution Function of Frequency. 

temp = data.groupby('Year').count().sort_values(by = 'Date' , 
ascending = False) 

plt.figure(figsize=(15,15)) 

sns.distplot(temp['Date'].values , norm_hist = True , axlabel = 
'Probability Distribution of Frequency of Cyclones.') 

 

## Frequency of Cyclones by category. 

 

## Frequency of Cyclones by Category 

# TD – Tropical cyclone of tropical depression intensity (< 34 knots) 

# TS – Tropical cyclone of tropical storm intensity (34-63 knots) 

# HU – Tropical cyclone of hurricane intensity (> 64 knots) 

# EX – Extratropical cyclone (of any intensity) 

# SD – Subtropical cyclone of subtropical depression intensity (< 34 
knots) 

# SS – Subtropical cyclone of subtropical storm intensity (> 34 
knots) 

# LO – A low that is neither a tropical cyclone, a subtropical 
cyclone, nor an extratropical cyclone (of any intensity) 

# WV – Tropical Wave (of any intensity) 

# DB – Disturbance (of any intensity) 
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temp = data.groupby('Status').count().sort_values(by = 'Date' , 
ascending = False) 

fig , ax = plt.subplots() 

fig.set_size_inches(12,12) 

sns.barplot(y = list(temp.index) , x = 'Date' , data = temp, palette= 
'pastel' ) 

plt.xlabel('Frequency') 

plt.ylabel('Catehory') 

plt.title('Category wise Frequency Distribution of Cyclones.') 

plt.show() 

 

 

 # Classification model.  

 

# Display the data. 

#newdata=pd.read_csv('newdf.csv') 

newdata.head(10) 

 

 

## 1. Decision Tree. 

 

# Import Decision Tree Classifier. 

from sklearn.tree import DecisionTreeClassifier 
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# Import train-test split. 

from sklearn.model_selection import train_test_split 

 

# Import accuracy Score. 

from sklearn.metrics import accuracy_score 

 

#Import Recall Score. 

from sklearn.metrics import recall_score  

 

#Import Precision Score. 

from sklearn.metrics import precision_score  

 

# Form the model. 

dt = DecisionTreeClassifier(min_samples_leaf=50 , 
criterion='entropy') 

 

 

# Set the dependent and independent variables. 

x_train = newdata[['Latitude', 'Latitude_Hemisphere', 

       'Longitude', 'Longitude_Hemisphere', 'Maximum Wind', 
'Minimum Pressure', 
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       'Low Wind NE', 'Low Wind SE', 'Low Wind SW', 'Low Wind 
NW', 

       'Moderate Wind NE', 'Moderate Wind SE', 'Moderate Wind SW', 

       'Moderate Wind NW', 'High Wind NE', 'High Wind SE', 'High 
Wind SW', 

       'High Wind NW']] 

y_train = newdata['Status'] 

 

 

# Perform the Kfold validation. 

 

# Import the KFold library. 

from sklearn.model_selection import KFold 

kf = KFold(n_splits=10 , shuffle= True , random_state=42 ) 

 

dt_scores = [] 

dt_recall_scores = [] 

dt_precision_scores = [] 

xtr,xts,ytr,yts=train_test_split(x_train,y_train,test_size=0.3,random_
state=4) 

dt.fit(xts, yts) 

y_pred = dt.predict(xts)  

dt_scores.append(accuracy_score(yts, y_pred))  
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dt_recall_scores.append(recall_score(yts , y_pred , average = 
'weighted')) 

dt_precision_scores.append(precision_score(yts , y_pred , average 
= 'weighted')) 

 

dt_scr = {'accuracy' : np.mean(dt_scores) , 'recall': 
np.mean(dt_recall_scores) , 'precision' :  
np.mean(dt_precision_scores) } 

print('Accuracy score for Decision Tree is :' , dt_scr['accuracy']) 

print('Recall score for Decision Tree is :' , dt_scr['recall']) 

print('Precision score for Decision Tree is :' , dt_scr['precision']) 

 

 

 

newdata.head() 

 

## 2. Random Forest. 

 

# Import Random Forest 

from sklearn.ensemble import RandomForestClassifier 

 

# First I want to determine the important features. 

rf = RandomForestClassifier(oob_score=True , n_estimators=1000) 
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rf.fit(x_train , y_train) 

features = pd.Series(rf.feature_importances_ , index= 
x_train.columns).sort_values(ascending=False) 

features 

 

## Creating a decision tree for top ten most important features. 

 

# Top ten most important features. 

features.index[:5] 

 

 

# Set the dependent and independent variables. 

x_trainf = newdata[features.index[:5]] 

y_train = newdata['Status'] 

 

# Perform the Kfold validation. 

 

# Import the KFold library. 

from sklearn.model_selection import KFold 

kf = KFold(n_splits=10 , shuffle= True , random_state=42 ) 

 

dt_scores = [] 
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dt_recall_scores = [] 

dt_precision_scores = [] 

xtr,xts,ytr,yts=train_test_split(x_trainf,y_train,test_size=0.3,random_
state=4) 

dt.fit(xtr , ytr) 

y_pred = dt.predict(xts)  

dt_scores.append(accuracy_score(yts, y_pred))  

dt_recall_scores.append(recall_score(yts , y_pred , average = 
'weighted')) 

dt_precision_scores.append(precision_score(yts , y_pred , average 
= 'weighted')) 

dt_scr5 = {'accuracy' : np.mean(dt_scores) , 'recall': 
np.mean(dt_recall_scores) , 'precision' :  
np.mean(dt_precision_scores) } 

print('Accuracy score for Decision Tree is :' , dt_scr['accuracy']) 

print('Recall score for Decision Tree is :' , dt_scr['recall']) 

print('Precision score for Decision Tree is :' , dt_scr['precision']) 

 

import numpy as np 

 

from keras.models import Sequential 

from keras.layers import Dense 

from keras.layers import LSTM 

 



, 
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x_train,x_test,y_train,y_test=train_test_split(x_trainf,y_train,test_siz
e=0.4,random_state=4) 

model = Sequential()   

 

 

## As we can see the Top five features('Maximum Wind', 'Minimum 
Pressure', 'Latitude', 'Year', 'Longitude') give the same accuracy as 
when we get choosing all the features. 

 

## 2 . Random Forest 

 

# Here instead of cross validation we will be using oob score as a 
measure of accuracy. 

# I will hyper tuning the parameter: No of Trees. 

 

trees  = [10, 20 , 50, 100,200,500,1000,1200] 

maxn_five = {} 

maxn = {} 

for i in trees: 

    rf = RandomForestClassifier(n_estimators=i , oob_score=True) 

    rf.fit(x_train, y_train) 

    print('Obb Score for {x} trees: and taking top five features 
'.format(x = i) , rf.oob_score_) 



, 
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    maxn_five[i] = rf.oob_score_ 

    rf.fit(x_train , y_train) 

    print('Obb Score for {x} trees: and taking all the features 
'.format(x = i) , rf.oob_score_) 

    maxn[i] = rf.oob_score_ 

 

# Split the data into training and testing. 

x_trainf = newdata[features.index[:5]] 

x_train = newdata[features.index[:18]] 

y_train = newdata['Status'] 

x_trains , x_tests , y_trains, y_tests  = train_test_split(x_trainf, 
y_train, test_size=0.33, random_state=42) 

# Set n to the feature of maximum oob score. 

n = 0 

for i in maxn_five: 

    if max(maxn_five.values()) == maxn_five[i]: 

        n= i 

# Set n_estimators to n. 

rf = RandomForestClassifier(oob_score=True , n_estimators=n) 

rf.fit(x_trains , y_trains) 

y_pred_rf = rf.predict(x_tests[features.index[:5]]) 
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scores_rf = {'accuracy': accuracy_score(y_tests , y_pred_rf) ,'recall' 
: recall_score(y_tests , y_pred_rf , average='weighted') ,'precision' : 
precision_score(y_tests , y_pred_rf , average='weighted') } 

print('Scores for Random Forest with n = ' , n , ' and using features 
',  features.index[:5] , ' are : ') 

print('Accuracy: ' , scores_rf['accuracy']) 

print('Recall: ' , scores_rf['recall']) 

print('Precision: ' , scores_rf['precision']) 

 

# n_All = 0 

# for i in maxn: 

#     if max(maxn.values()) == maxn[i]: 

#         n_All= i 

# # Set n_estimators to n. 

# rf = RandomForestClassifier(oob_score=True , 
n_estimators=n_All) 

# rf.fit(x_train , y_train) 

# y_pred_rf_all = rf.predict(x_test) 

# scores_rf_all = {'accuracy': accuracy_score(y_test , y_pred_rf) 
,'recall' : recall_score(y_test , y_pred_rf , average='weighted') 
,'precision' : precision_score(y_test , y_pred_rf , 
average='weighted') } 

# print('Scores for Random Forest with n = ' , n_All , ' and using all 
features ' , ' are : ') 

# print('Accuracy: ' , scores_rf_all['accuracy']) 
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# print('Recall: ' , scores_rf_all['recall']) 

# print('Precision: ' , scores_rf_all['precision']) 

 

 

## 3. Naive Bayes Algorithm. 

 

from sklearn.naive_bayes import GaussianNB 

from sklearn.metrics import confusion_matrix 

from sklearn.metrics import f1_score 

from sklearn.metrics import accuracy_score 

from sklearn.metrics import recall_score 

from sklearn.metrics import precision_score 

x_trains,x_tests,y_trains,y_tests=train_test_split(x_trainf,y_train,test
_size=0.25,random_state=4) 

model = GaussianNB() 

model.fit(x_trains, y_trains) 

 

# Predict Output  

pred = model.predict(x_tests) 

 

# Plot Confusion Matrix 

res = confusion_matrix(pred,y_tests) 
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names = np.unique(pred) 

print("Accuracy (Naive Bayes):",scores_rf['accuracy']*100) 

print("Recall (Naive Bayes):",scores_rf['recall']*100) 

print("Precision (Naive Bayes) :",scores_rf['precision']*100) 

 

### We can see that the overall score with top five features is 
significantly greater than the overall score with all the features. 
Hence , we can see that feature selection is very important for 
Naive Bayes. 

 

## 4. Support Vector Algorithm. 

 

# Import SVM. 

from sklearn.naive_bayes import GaussianNB 

from sklearn import svm 

mdl5 = svm.SVC() 

nb5 = GaussianNB() 

acc_s_5 = []  

rcl_s_5 = []  

ps_scr_5 = [] 

 

# Split the data into train and test. 
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xtr5, xts5 , ytr , yts = train_test_split(x_trainf, y_train , test_size = 
0.25 , random_state = 42) 

 

# Train the model. 

mdl5.fit(xtr5 , ytr) 

y_mdl5_pred = model.predict(xts5) 

acc_s_5.append(accuracy_score(yts , y_mdl5_pred)) 

rcl_s_5.append(recall_score(yts , y_mdl5_pred , average = 
'weighted')) 

ps_scr_5.append(precision_score(yts , y_mdl5_pred , average = 
'weighted')) 

 

# for tr, ts in kf.split(x_train): 

#     ytr = y_train.loc[tr] 

#     yts = y_train.loc[ts] 

#     xtr5 = x_trainf.loc[tr] 

#     xts5 = x_trainf.loc[ts] 

 

# #   Accuracy , Precision and recall with top five features. 

#     mdl5.fit(xtr5 , ytr) 

#     y_mdl5_pred = nb5.predict(xts5) 

#     acc_s_5.append(accuracy_score(yts , y_mdl5_pred)) 
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#     rcl_s_5.append(recall_score(yts , y_mdl5_pred , average = 
'weighted')) 

#     ps_scr_5.append(precision_score(yts , y_mdl5_pred , average 
= 'weighted')) 

     

svm_scores = {'accuracy':np.mean(acc_s_5) , 
'recall':np.mean(rcl_s_5) , 'precision':np.mean(ps_scr_5)} 

print('SVM results for top five features for Accuracy ' , 
svm_scores['accuracy'] , 'Recall: ' , svm_scores['recall'], 'and 
Precision: ' , svm_scores['precision'] ) 

 

 

### We can see that the overall score with top five features is 
significantly greater than the overall score with all the features. 
Hence , we can see that feature selection is very important for 
SVM. 

 

## **AdaBoost** 

 

x_trainf = newdata[features.index[:5]] 

y_train = newdata['Status'] 

 

 

from sklearn.ensemble import AdaBoostClassifier 

from sklearn import metrics 
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x_trains,x_tests,y_trains,y_tests=train_test_split(x_trainf,y_train,test
_size=0.25) 

 

AdaModel=AdaBoostClassifier(n_estimators=100,n_classes=learni
ng_rate=1) 

model=AdaModel.fit(x_trains,y_trains) 

y_pred=model.predict(x_tests) 

 

print("Accuracy",metrics.accuracy_score(y_tests,y_pred)) 

print("Recall :",metrics.recall_score(y_tests,y_pred)) 

print("Precision (Naive Bayes) :",scores_rf['precision']*100) 

 

#**KNN** **Classification** 

 

from sklearn.preprocessing import StandardScaler 

from sklearn.neighbors import KNeighborsClassifier 

 

x=newdata.iloc[:,1:5] 

y=newdata.iloc[:,0] 

x_trains,x_tests,y_trains,y_tests=train_test_split(x,y,test_size=0.3,r
andom_state=4) 
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sc_x=StandardScaler() 

x_trains=sc_x.fit_transform(x_trains) 

x_tests=sc_x.fit_transform(x_tests) 

print(x_trains) 

 

classifier=KNeighborsClassifier(n_neighbors=19,p=2,metric='euclid
ean') 

classifier.fit(x_trains,y_trains) 

y_pred=classifier.predict(x_tests) 

print(y_pred) 

 

print("Accuracy (KNN) :",scores_rf['accuracy']*100) 

print("Recall (KNN) :",scores_rf['recall']*100) 

print("Precision (KNN) :",scores_rf['precision']*100) 
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INTRODUCTION 

 
Machine learning has become a mainstay in the field of information technology [1]. It is 

being increasingly used for a variety of tasks that involve prediction and classification. Given 

the tremendous scope of application of this new field, it is only natural that this area is 

undergoing lots of research and development. 

An important area in which machine learning has found wide spread application is particle 

physics research, beginning with applications to high-level physics analysis in the 1990s and 

2000s, followed by an explosion of applications in particle and event identification and 

reconstruction in the 2010s.  

 

 

RHIC Collider 

 

RHIC is the first machine in the world capable of colliding heavy ions, which are 

atoms which have had their outer cloud of electrons removed. RHIC initially used gold ions 

as it is one of the heaviest common elements and have densely packed core. RHIC collides 

two beams of gold ions moving in 

opposite direction (head on collision) 

near the speed of light (called 

relativistic speed). The beam travels in 

opposite direction around 2.4 miles. 

When ions collide in such high speed a 

fascinating thing happened. 

Temperature inside the RHIC is 

thousands of times greater than the 

temperature of the sun. It is also  

famous for- “the world’s only machine         fig 1: RIHC Collider 

 capable of colliding high-energy beams of polarized protons, and is a unique tool for 

exploring the puzzle of the proton's 'missing' spin.” It contains two largest experiments 

called STAR and PHENIX and in addition other small experiments named as PHOBOS and 

BRAHMS. Every detector is specialized measuring different phenomenon. 

 

The Large Hadron Collider 

 
LHC [2] was built by the European Organization for Nuclear Research (CERN) 

between 1998 and 2008 in collaboration with over 10,000 scientists and hundreds of 

universities and laboratories, as well as more than 100 countries. It lies in a tunnel 27 

kilometres (17 mi) in circumference and as deep as 175 metres (574 ft.) beneath the France-
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Switzerland border near Geneva. The first collisions were achieved in December 2009 at 

energy of 3.5 Tev per beam. After upgrade it reached 6.5 Tev per beam (13 Tev total 

collision energy, present world record). At 

the end of 2018, it made shutdown for two 

years for making upgrade and maintenance. 

Initial focus of the researcher was to 

investigate the existence of Higgs Boson 

which is predicated theoretically, but not 

initially experimentally found due to its high 

mass and elusive nature. At the year of 2012 

CERN scientists  

confirmed the Higgs Boson, which is great        

fig 2: LHC                                           success of LHC. LHC also searched for super 

symmetric particle, other hypothetical particles and unsolved question in particle 

physics 

 

EIC Collider 

The computers and smartphones used every day depend on what we learned about 

the atom in the last century. All information technology—and much of the economy 

today—relies on understanding the electromagnetic force between the atomic nucleus and 

the electrons that orbit it. The science of that force is well understood but still know little 

about the microcosm within the protons and neutrons that make up the atomic nucleus. 

That’s why Brookhaven Lab is building a new machine—an Electron-Ion Collider [3], or EIC—

to look inside the nucleus and its protons and neutrons.  

 

    Fig 3: The EIC in outline 
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The EIC will be a particle accelerator that collides electrons with protons and nuclei to 

produce snapshots of those particles’ internal structure—like a CT scanner for atoms. The 

electron beam will reveal the arrangement of the quarks and gluons that make up the 

protons and neutrons of nuclei. The force that holds quarks together, carried by the gluons, 

is the strongest force in Nature. The EIC will allow us to study this “strong nuclear force” and 

the role of gluons in the matter within and all around us. What we learn from the EIC could 

power the technologies of tomorrow. 

 

Our aim 

 

Physicists at the Electron Ion Collider (EIC) rely on detailed simulations of particle 

collisions to build expectations of what experimental data may look like under different 

theory modelling assumptions. Petabytes of simulated data are needed to develop analysis 

techniques, though they are expensive to generate using existing algorithms and computing 

resources. The modelling of detectors and the precise description of particle cascades as 

they interact with the material in the calorimeter are the most computationally demanding 

steps in the simulation pipeline. We therefore try to predict the events without using heavy 

simulator software for Athena EIC calorimeter. 

 

 

 

Technology Used  
 

• Root 

ROOT [4] is a framework for data processing, born at CERN, at the heart of 

the research on high-energy physics. You can save your data (and any C++ object) in 

a compressed binary form in a ROOT file. The object format is also saved in the same 

file: the ROOT files are self-descriptive. Even in the case the source files describing 

the data model are not available, the information contained in a ROOT file is be 

always readable. 

 ROOT provides a data structure, the tree, that is extremely powerful for fast 

access of huge amounts of data - orders of magnitude faster than accessing a normal 

file. Data saved into one or several ROOT files can be accessed from your PC, from 

the web and from large-scale file delivery systems used e.g., in the GRID. ROOT trees 

spread over several files can be chained and accessed as a unique object, allowing 

for loops over huge amounts of data. 

 Powerful mathematical and statistical tools are provided to operate on your 

data. The full power of a C++ application and of parallel processing is available for 
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any kind of data manipulation. Data can also be generated following any statistical 

distribution and modelled, making it possible to simulate complex systems. 

 

• GEANT3 

GEANT [5] is the name of a series of simulation software designed to describe 

the passage of elementary particles through matter, using Monte Carlo methods. 

The name is an acronym formed from "GEometry ANd Tracking". Originally 

developed at CERN for high energy physics experiments, GEANT-3 has been used in 

many other fields. 

 

 

• Calorimeters 

A calorimeter [6] measures the energy a particle loses as it passes through. It 

is usually designed to stop entirely or “absorb” most of the particles coming from a 

collision, forcing them to deposit all of their energy within the detector, thus 

measuring their full energy. Calorimeters have to perform two different tasks at the 

same time – stopping particles and measuring energy loss – so they usually consist of 

layers of different materials: a “passive” or “absorbing” high-density material – for 

example, lead – interleaved with an “active” medium such as plastic scintillators or 

liquid argon. 

         Fig 4: The barrel electromagnetic calorimeter of ATHENA 
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Electromagnetic calorimeters measure the energy of electrons and photons 

as they interact with the electrically charged particles in matter. Hadronic 

calorimeters sample the energy of hadrons (particles containing quarks, such as 

protons and neutrons) as they interact with atomic nuclei. Calorimeters can stop 

most known particles except muons and neutrinos. 

 

The dataset 
 

The dataset used in this project was generated from a detector. The dataset was in 

.dat format that was generated using root, we had to convert it into csv to work with it. The 

resultant csv file contains 5000 simulations and every row represent a simulation. We have 

generated the csv using python script. There was no need for further pre-processing or 

cleaning the dataset. 

 

  

Generating Data 
 

Model Used 
  

For this experiment we have decided to use Generative adversarial networks [7] or 

GAN as a recently developed technique for learning in both semi-supervised and 

unsupervised mode. These networks obtain it through modelling high-dimensional 

distributions of data implicitly. 

GANs have two main blocks (two neural networks) which compete with each other 

and are able to capture, copy, and analyse the variations in a dataset. The two models are 

usually called Generator and Discriminator. 

 

1) Discriminator – It is a supervised approach. It is a simple classifier that predicts data is 

fake or real. It is trained on real data and provides feedback to a generator. 

 

2) Generator – It is an unsupervised learning approach. It will generate data that is fake data 

based on original(real) data. It is also a neural network that has hidden layers, activation, 

loss function. Its aim is to generate the fake image based on feedback and make the 

discriminator fool that it cannot predict a fake image. And when the discriminator is made a 

fool by the generator, the training stops and we can say that a generalized GAN model is 

created. 
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GANs have been gaining considerable attention, and the desire to use GAN in many fields is 

growing. GANs have been successfully implemented for solving a variety of tasks such as 

image generation from descriptions getting high-resolution images from low-resolution 

ones predicting which drug could treat a certain disease, Object detection, retrieving images 

that contain a given pattern Facial Attribute Manipulation, Anime Character Generation, 

Image to Image Translation and many more. 

 

 
Fig 5: Block diagram of the Generative Adversarial Network (GAN). 

 

Activation Function Used 
 

ReLU (Rectified Linear Unit) [8] Activation Function is the most used activation function in 

the world right now. Since, it is used in almost all the convolutional neural networks or deep 
learning. 

Fig 6: ReLU activation function 
 
 
As you can see, the ReLU is half rectified (from bottom). f(z) is zero when z is less than zero 
and f(z) is equal to z when z is above or equal to zero. 
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Range: [ 0 to infinity) 
 
The function and its derivative both are monotonic. 
 
But the issue is that all the negative values become zero immediately which decreases the 
ability of the model to fit or train from the data properly. That means any negative input 
given to the ReLU activation function turns the value into zero immediately in the graph, 
which in turns affects the resulting graph by not mapping the negative values appropriately. 
 

Leaky ReLU 
 
It is an attempt to solve the dying ReLU problem 
 

 
Fig 7: ReLU v/s Leaky ReLU 

 
The leak helps to increase the range of the ReLU function. Usually, the value of a is 0.01 or 
so. 
When a is not 0.01 then it is called Randomized ReLU. 
Therefore, the range of the Leaky ReLU is (-infinity to infinity). 
 

Sigmoid activation function 
 
The sigmoid activation function [9] (also called logistic function) takes any real value as 
input and outputs a value in the range (0,1). It is calculated as follows: 
 

S (x) = 
1

1+𝑒−𝑥
 

 
where x is the output value of the neuron. Below, we can see the plot of the sigmoid 
function when the input lies in the range [-10, 10]: 
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fig 8: Sigmoid function 
 
When the output value is close to 1, the neuron is active and enables the flow of 
information, while a value close to 0 corresponds to an inactive neuron. Also, an important 
characteristic of the sigmoid function is the fact that it tends to push the input values to 
either end of the curve (0 or 1) due to its S-like shape. 
 

Tanh 
 
Another activation function that is common in deep learning is the tangent hyperbolic 
function [10] simply referred to as tanh function. It is calculated as follows: 

 
 
We observe that the tanh function is a shifted and stretched version of the sigmoid. Below, 
we can see its plot when the input is in the range [-10, 10]: 

 
Fig 9: tanh activation function 

The output range of the tanh function is (-1, 1) and presents a similar behaviour with the 
sigmoid function. The main difference is the fact that the tanh function pushes the input 
values to 1 and -1 instead of 1 and 0 
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Generating simulation 
 
We have our data in the form of detector cells which have been flattened down into 

1d array of length 121. 
  

Fig 6: Flattened down data 
 
We have 5000 simulations from these detector cells and we wish to generate another 

121 such simulations. 
 

• Generator model 
 

In the generator model we have one input layer and one output layer and two 
hidden layer and activation function leaky ReLU and adam optimizer. For output layer we 
have used tanh activation function and binary cross entropy loss function 

 
• Discriminator module 

 
In the discriminator module we have one input and output layer and three hidden 

layers where leaky ReLU activation is used and for output layer there is sigmoid 
activation function is used. We also added dropout layer to reduce overfitting. We also 
used adam optimizer and binary cross entropy loss function.  

 
We have tried to create a system similar to moving averages. We have generated 121 fresh 
simulations, removed the first 100 simulations and added the newly generated data to old 
data, then generated 121 new simulations again. We have trained the data for 10 epochs. 
Since this is the simulation, we had to manually verify the data by plotting it for each run. 
This has been successful. 
 
 
 

Result 
 

To manually verify the data we had to plot it for each run. 
 
 

Original     Simulated 
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Conclusion 
From the above images we can say that we can successfully generate fresh simulation. We 
can implement the Wasserstein loss function for better results from the GAN in future. 
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PROBLEM DESCRIPTION 

Breast cancer has become one of the most common forms of cancer among women across the 

world, the successful use of CAD can be proven to be highly effective to bring a better solution in 

terms of breast cancer detection [1]. Apart from that, it is noticed that cancer treatment is not 

affordable in different countries across the globe. The situation is even worse in developing nations 

where a large share of the population is in poverty. In Asian nations such as India, Bangladesh, Sri 

Lanka, and Nepal among others, there is still a lack of sufficient infrastructure to provide cures to 

women suffering from breast cancer [2]. In other developing nations across the globe, it is also 

noticed that women are not such well-informed about breast cancer. Apart from that, the lack of 

healthcare infrastructure is another reason that causes the detection of breast cancer to be delayed. 

In order to resolve this issue, machine learning can become a potential solution in this regard. This 

is also expected to help women across the globe to get their breast cancer detected early. This, in 

turn, will be helpful for such women in different nations to save their lives from this deadly disease 

for which no such standard treatment process has been discovered yet. In order to classify whether 

a tumor is benign or malignant, many machine learning algorithms are used such as Random 

Forest, Logistic Regression, Naïve Bayes, and many more. Thus, the scope of machine learning in 

the context of diagnosing breast cancer seems prominent as a computer-aided diagnosis system 

can be helpful to detect breast cancer among women of different ages. Since the detection of breast 

cancer requires the identification of breast lumps and measuring their thickness among others, it 

is required to reduce the time of each of such procedures so that the diagnosis process of breast 

cancer can be made more efficient. Since breast cancer has become one of the most common forms 

of cancer among women across the globe, it is the need of the hour to find a better diagnosis 

process for the same. Therefore, the objective of this paper is to discuss the role of machine 

learning techniques in diagnosing breast cancer. In this context, machine learning is expected to 

become helpful to bring some development in the field of breast cancer detection. Since breast 

cancer is a matter of concern around the globe, this paper remains significant in discussing the 

connection between computer science and medical science in bringing a ray of hope in terms of 

breast cancer detection.  
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CHAPTER 1: INTRODUCTION 

1.1 MACHINE LEARNING 

Machine learning (ML) is a field of inquiry devoted to understanding and building methods that 

'learn', that is, methods that leverage data to improve performance on some set of tasks [3]. 

Machine learning is a branch of artificial intelligence (AI) and computer science which focuses on 

the use of data and algorithms to imitate the way in which humans learn, gradually improving its 

accuracy. Machine learning is an important component of the growing field of data science. 

Through the use of statistical methods, algorithms are trained to make classifications or 

predictions, uncovering key insights within data mining projects. 

1.1.1 HOW MACHINE LEARNING WORKS 

According to UC Berkeley learning system of machine learning includes three parts: 

01. A Decision Process: In general, machine learning algorithms are used to make a prediction 

or classification. Based on some input data, which can be labeled or unlabeled, an algorithm 

will produce an estimate of a pattern in the data. 

02. An Error Function: An error function serves to evaluate the prediction of the model. In 

any case, where there are known examples, an error function can make a comparison to 

assess the accuracy of such a model. 

03. A Model Optimization Process: If the model can fit better to the data points in the training 

set, then weights are adjusted to reduce the discrepancy between the known example and 

the model estimate. The algorithm will repeat this to evaluate and optimize the process, 

updating weights autonomously until a threshold of accuracy has been met.  

1.1.2 METHODS OF MACHINE LEARNING:  

Machine learning are classified into three primary categories. 

1.1.2.1 Supervised Machine Learning 
Supervised learning, also known as supervised machine learning, is defined by its use of labeled 

datasets to train algorithms that classify data or predict outcomes accurately. As input data is fed 

into the model, it adjusts its weights until the model has been fitted appropriately. This occurs as 

part of the cross-validation process to ensure that the model avoids overfitting or underfitting. 

Supervised learning helps organizations solve a variety of real-world problems at scale, such as 

classifying spam in a separate folder from your inbox. Some methods used in supervised learning 

https://www.ibm.com/cloud/learn/overfitting
https://www.ibm.com/cloud/learn/underfitting
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include neural networks, Naïve Bayes, linear regression, logistic regression, random forest 

algorithm, support vector machine (SVM), and more.  

1.1.2.2 Unsupervised Machine Learning 

Unsupervised learning, also known as unsupervised machine learning, uses machine learning 

algorithms to analyze and cluster unlabeled datasets. These algorithms discover hidden patterns or 

data groupings without the need for human intervention. Its ability to discover similarities and 

differences in information makes it the ideal solution for exploratory data analysis, cross-selling 

strategies, customer segmentation, and image pattern recognition. It’s also used to reduce the 

number of features in a model through the process of dimensionality reduction; principal 

component analysis (PCA) and singular value decomposition (SVD) are two common approaches 

for this. Other algorithms used in unsupervised learning include neural networks, k-means 

clustering, probabilistic clustering methods, and more. 

1.1.2.3 Semi-Supervised Learning  

Semi-supervised learning offers an efficient medium between supervised and unsupervised 

learning. During training, it uses a smaller labeled data set to guide classification and feature 

extraction from a larger, unlabeled data set. Semi-supervised learning can solve the problem of 

having not enough labeled data (or not being able to afford to label enough data) to train a 

supervised learning algorithm [4]. 

1.2 MACHINE LEARNING TECHNIQUES 

1.2.1 Decision Tree: 

Decision trees are popular machine learning models that can be used for both regression and 

classification problems. A decision tree uses a tree-like structure of decisions along with their 

possible consequences and outcomes. In this, each internal node is used to represent a test on an 

attribute; each branch is used to represent the outcome of the test. In a decision tree, each test node 

splits the instance space into two or more sub-spaces according to a certain discrete function of the 

input values. In the simplest case, each test considers a single attribute, such that the instance space 

is portioned according to the attribute’s value. In the case of numeric attributes, the condition refers 

to a range. The instances are classified by navigating them from the root of the tree down the leaf, 

according to the outcome of the tests along the path. The below figure describes a simple use of 

the decision tree. Each node is labeled with the attribute it tests, and its branches are labeled with 

their corresponding values. Given this classifier, the analyst can predict the response of some 
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potential customers and understand the behavioral characteristics of the entire potential customer 

population [5]. 

 

Figure 1: Decision Tree Diagram 

(Source: Nallamala et al., 2019) 

In the case of numeric attributes, decision trees can be geometrically interpreted as a collection of 

hyperplanes, each orthogonal to one of the axes, since they may be considered more 

comprehensive. 

1.2.2 Random Forest: 

Random Forest is the ensemble learning method, which consists of a large number of decision 

trees. Each decision tree in a random forest predicts an outcome, and the prediction with the 

majority of votes is considered the outcome. A random forest model can be used for both 

regression and classification problems. For the classification task, the outcome of the random 

forest is taken from the majority of votes. Whereas in the regression task, the outcome is taken 

from the mean or average of the predictions generated by each tree. Each dataset is generated with 

displacement from the original dataset. Then, trees are developed using a random selection feature 

but are not pruned. This strategy makes the RF Algorithm unique and highly accurate. The RF 
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Algorithm is also very fast, resistant to extreme adaptability, and can work with as many trees as 

desired [6]. The below figure shows the working principle of the Random Forest Algorithm. 

 

 

Figure 2: Random Forest 

(Source: Mahammad et al., 2020) 

 

1.2.3 Logistic Regression: 

Logistic Regression is used to solve the classification problems in machine learning. They are 

similar to linear regression but used to predict the categorical variables. It can predict the output 

in either Yes or No, 0 or 1, True or False, etc. However, rather than giving the exact values, it 

provides the probabilistic values between 0 & 1. The most important difference between naive 

Bayes and logistic regression is that logistic regression is a discriminative classifier while naive 

Bayes is a generative classifier. Logistic regression is a type of regression that predicts the 

probability of occurrence of an event by fitting data to a logistic function. Just like any form of 

regression analysis, logistic regression makes use of several predictor variables that may be 

numerical or categorical [7]. The logistic regression hypothesis is defined as 

ℎ𝜃 (𝑥) = 𝑔(𝜃 𝑇𝑥)  

Where the function 𝑔 is a sigmoid function defined as 
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The sigmoid function has special properties that result in the values in the range [0,1], visualized 

as (below figure),  

 

Figure 3: Logistic Regression 

(Source: Sivapriya et al., 2019) 

The cost function for logistic regression is given as:  

 

1.2.4 Support Vector Machine: 

Support vector machine or SVM is a popular machine learning algorithm, which is widely used 

for classification and regression tasks. However, specifically, it is used to solve classification 

problems. The main aim of SVM is to find the best decision boundaries in an N-dimensional space, 

which can segregate data points into classes, and the best decision boundary is known as 

Hyperplane. SVM selects the extreme vector to find the hyperplane, and these vectors are known 

as support vectors [8]. Here's how a support vector machine algorithm model works: 

A. First, it finds lines or boundaries that correctly classify the training dataset. 

B. Then, from those lines or boundaries, it picks the one that has the maximum distance from 

the closest data points. 
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Figure 4: Support Vector Machine 

(Source: Joshi and Mehta, 2017) 

1.2.5 Naïve Bayes: 

Naïve Bayes is another popular classification algorithm used in machine learning. This 

classification provides practical learning algorithms and can combine observed data. Bayesian 

classification provides a useful perspective for understanding and evaluating learning algorithms. 

It calculates explicit probabilities for hypothesis and it robust the noise in input data It is called so 

as it is based on the Bayes theorem and follows the naïve (independent) assumption between the 

features which is given as 

Each naïve Bayes classifier assumes that the value of a specific variable is independent of 

any other variable/feature [9]. For example, if a fruit needs to be classified based on color, shape, 

and taste. So yellow, oval, and sweet will be recognized as mango. Here each feature is 

independent of other features. Let’s consider a general probability distribution of two values (𝑥1, 

𝑥2). Using the Bayes rule, without loss of generality we get this equation:  

(𝑥1, 𝑥2) = 𝑃(𝑥1 |𝑥2)𝑃(𝑥2)  

Similar, if there is another class variable c, we get the next equation:  

(𝑥1, 𝑥2 |𝑐) = 𝑃(𝑥1 |𝑥2, 𝑐)𝑃(𝑥2 |𝑐)  

If the situation is generalized with two variables to a conditional independence assumption for a 

set of variables 𝑥1,.…, 𝑥𝑁 conditional on another variable c, we get the following: 
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1.2.6 K-Nearest Neighbor: 

K-Nearest Neighbor is one of the simplest Machine Learning algorithms based on the Supervised 

Learning technique. The K-NN algorithm assumes the similarity between the new case/data and 

available cases and puts the new case into the category that is most similar to the available 

categories. K-NN algorithm stores all the available data and classifies a new data point based on 

the similarity. This means when new data appears then it can be easily classified into a well-suited 

category by using K- NN algorithm. The K-NN algorithm can be used for Regression as well as 

for Classification but mostly it is used for Classification problems. K-NN is a non-parametric 

algorithm, which means it does not make any assumptions on underlying data. The working 

principle behind KNN is it presumes that alike data points lie in the same surroundings. It reduces 

the burden of building a model, adapting a number of parameters, or building furthermore 

assumptions. It catches the idea of proximity-based on a mathematical formula called Euclidean 

distance, the calculation of distance between two points in a plane [7]. Suppose the two points in 

a plane are A(x0,y0) and B( x1,y1) then the Euclidean distance between them is calculated as 

follows. 

 

An object to be classified is allotted to the respective class which represents the greater number of 

its nearest neighbors. If k takes the value as 1, then the data point is classified into the category 

that contains only one nearest neighbor. Given a new input data point, the distances between that 

points to all the data points in the training dataset are computed. Choosing the value of K is the 

crucial step in the implementation of the KNN algorithm. The value of K is not fixed and it varies 

for every dataset, depending on the type of the dataset. If the value of K is less the stability of the 

prediction is less. 
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CHAPTER 2: RELATED WORK & MOTIVATION 

2.1 RELATED WORKS 

According to Amrane et al. (2018) [10] to make a good prognostic, breast cancer classification 

needs nine characteristics which are: Clump Thickness, Uniformity of Cell Size, Uniformity of 

Cell Shape, Marginal Adhesion, Single Epithelial Cell Size, Bare Nuclei, Bland Chromatin, 

Normal Nucleoli, and Mitosis. The NB and KNN these two methods are proposed to predict the 

BC in the Wisconsin breast cancer database dataset. After that k-fold cross-validation technique is 

used to check and evaluate the learning algorithms or models, by partitioning data into a learning 

set to train the model and a testing set to evaluate it. When KNN is used for BC classification it 

gives 97.5109% accuracy where the Training process, test process, and total process are 0.000735, 

0.001744, and 0.002479 respectively. And when NB is used for BC classification it gives 

96.1932% accuracy. That is, KNN is better than NB in terms of accuracy and duration. 

Sharma et al. (2018) [11] proposed some classification techniques such as Random Forest, KNN, 

and Naïve Bayes. For RF they divide the Wisconsin Diagnosis Breast Cancer (WDBC) dataset 

into two parts such as training and testing. In the training set, there are 398 samples and in the 

testing set, there are 171 samples. From the confusion matrix of KNN, it is shown that only one 

observation is misclassified as Benign and only four observations are misclassified as Malignant. 

According to NB's confusion matrix, it is shown that a total of 16 observations are misclassified 

where 7 are Benign and 9 for Malignant. After that, the classifiers are tested using 10-folds, where 

9-fold is used for training, and the last one is used for testing. Using the Random Forest algorithm 

gives an accuracy of 94.74. While using the KNN algorithm, 95.90% of accuracy is achieved. It 

gives an accuracy of 94.47% while using the Naïve Bayes algorithm. Based on these results it is 

clear that KNN gives the highest percentage value for accuracy, precision, and F1-score whereas 

RF gives the highest value for recall. 

Nallamala et al. (2019) [5] proposed several ML algorithms that are obtainable for forecasting & 

analysis of breast cancer. Such algorithms are Naïve Bayes, KNN, and SVMs. They used projected 

Ensemble Voting techniques for finding breast cancer disease. Here they use Wisconsin Breast 

Cancer (WBC) dataset for BC detection. Initially, on the dataset, they apply logistic algorithms 

and implement neural network contrivance processes. For this, a Voting Ensemble process is 

instigated for syndicating these grades and concluding precision. To do these tasks NumPy, 

Pandas, Matplotlib, and sci-kit-learn all these packages are needed. For classification, they use 
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SVM, Logistic Regression, and KNN. After applying all these methods to 16 features only it gives 

98.50% precision.  

Mohammed et al. (2020) [6] present three steps for data preprocessing, these are such as 

discretization, instances resampling, and removing the missing values. After that, 10-fold cross-

validation has been applied. Then, three classifiers namely Naïve Bayes, SMO (Sequential 

Minimal Optimization), and Decision Tree built on the J48 algorithm have been evaluated over 

the WBC dataset as well as FNA-fine needle aspirate of a breast tumor datasets. The accuracy of 

the classifiers for the test on the Breast Cancer Database without preprocessing for J48, NB, and 

SMO are 75.52%, 71.67%, and 69.58% respectively. When resample filters are applied many times 

on the Breast Cancer Database dataset classifier, gives 98.20%, 76.61%, and 95.32% accuracy for 

J48, NB, and SMO algorithms respectively. Similarly for the WBC dataset when the experiment 

is performed without preprocessing data it gives an accuracy of 94.56%, 95.99%, and 96.99% for 

J48, NB, and SMO respectively. After applying a resample filter many times on the WBC dataset 

classifier gives 99.24%, 99.12%, and 99.56% accuracy for J48, NB, and SMO algorithms 

respectively. Results show that using the resample filter in the preprocessing phase, enhances the 

performance of the classifiers. 

Sivapriya et al. (2019) [7] proposed four main classification algorithms, SVM, Random Forest, 

Logistic Regression, and Naive Bayes are used to predict breast cancer on the Breast Cancer 

dataset WBC database where 699 instances are there in which 458 are Benign and 241 are 

Malignant. To predict BC, these four classification algorithms are evaluated on the database. To 

check the efficiency the models are compared based on accuracy. Here accuracy using Logistic 

Regression, SVM, NB, and Random Forest are 99.06%, 98.59%, 94.83, and 99.76% respectively. 

From the above values, it is clearly shown that RF gives us the highest accuracy and running time 

combined because it creates multiple trees with each tree providing different results. 

Bazazeh and Shubair (2016) [12] uses three techniques which are RF, SVM, and BN for the 

detection of the Wisconsin original breast cancer dataset. They use the k-fold cross-validation 

method for testing the classifier. In this paper, they use Waikato Environment for Knowledge 

Analysis (WEKA) software as an ML tool. From the result, it shows that the accuracy is 97% 

approximately. The receiver operating characteristics (ROC) is a 2-D representation of TP rate and 

FP rate. The area under a ROC graph reflects the performance of the classifier. Based on this 

parameter when SVM is used it gives 96.4% for Benign and for Malignant it gives 96.8%. 
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Similarly, when RF is used it gives 99.8% for Benign and 99.9% for Malignant. And when BN is 

used it gives 99% for Benign and 99.2% for Malignant. So, it shows that RF has a higher chance 

of discriminating between malignant and benign cases.  

Deepa et al. (2021) [13] present four types of classification models. These models are K-Nearest 

neighbor → weighted KNN and cosine KNN, Linear support vector machine, Linear discriminant 

analysis, and ANN. First, they collect the Wisconsin dataset and then extract features from it. After 

applying various classification models, finally, they get the performance measures.  To check the 

quality of classifiers Receiver Operating Characteristics (ROC) is used. The training and testing 

class contains 80% for training and 20% for testing of the dataset respectively. Here records with 

benign labels are positive and records with malignant labels are negative. Based on these values 

when Weighted k-NN is applied it gives 96.70% accuracy. When cosine k-NN is applied it gives 

97.13% accuracy. When SVM is applied it gives 96.70% accuracy. Similarly, when LDA is 

applied it gives 95.99% accuracy. And finally, when ANN is applied it gives 97.60% accuracy. It 

shows that ANN comes out with the highest accuracy. 

Joshi and Mehta (2017) [8] proposed RF, SVM, DT, and KNN models for the classification of BC. 

These four ML techniques generate a huge percentage of differentiating the Benign and Malignant 

tumors. To check the performance of ML, some measures are used namely accuracy, sensitivity, 

precision, etc. The Wisconsin Breast Cancer (WBC) dataset is randomly divided into two parts, 

one for training which contains almost 70% of data, and another part for testing which contains 

almost 30% of data. Benign is considered for positive and Malignant is considered for negative 

cases. Based on the confusion matrix values KNN gives 100% accuracy. And SVM gives 94.714% 

accuracy. Similarly, DT gives 92.891% accuracy. And finally, for RF the values of accuracy are 

92.891%. From this result, it can be concluded that the KNN classifier is better than the other 

classifiers. 

Keleş (2019) [9] proposed an RF algorithm to classify the BC. Here he describes a method for 

creating a forest of unrelated trees using a Classification and Regression Treelike (CART-like) 

procedure that is bagging. During the classification phase, RF finds the classification value using 

more than one decision tree. After that, he uses a 10-fold cross-validation technique for measuring 

the performances. Where one part is aside and the rest of the part that is 9 folds are used for this 

purpose. It gives 92.2% accuracy on average. Here one key is important, that is the accuracy of 
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the classification methods depends on the user's parameters such as N (total number of trees), and 

m (total number of used parameters). So that the choice of parameters may increase the accuracy.   

Shravya et al. (2019) [14] present classification techniques such as SVM, K-NN, and LR with the 

Dimensionality Reduction technique i.e., Principal Component Analysis (PCA). For doing these 

tasks feature selection, feature projection, model selection, etc. are used. The dataset contains 32 

attributes which are reduced to a few numbers because of dimensionality reduction methods. In 

the case of evaluating the dataset, the LR classifier gives an accuracy of 92.10%. KNN classifier 

gives 92.23% accuracy. When SVM is used it gives an accuracy of 92.78%. The result shows that 

the best accuracy is derived by SVM with 92.78% accuracy. Here it is shown that multidimensional 

data along with feature selection, model selection, and classification may provide very good tools 

in this area.  

Gunjan et al. (2021) [15] downloaded an online Wisconsin Breast Cancer dataset having 30 

parameters and 570 real-world cases of BC. For the system to understand the format of the row 

data they transfer these row data into system understandable format using some preprocessing 

tasks. After this preprocessing, some classification techniques are applied such as LR, SVM, KNN, 

and DT. After creating an efficiency model, efficiency is checked based on accuracy. When LR is 

used it gives 94.4% of accuracy. When SVM is used it gives 96.6% of accuracy. Similarly, when 

KNN and DT are used they give 95.8% and 95.1% of accuracy respectively. From the result, it 

can be concluded that SVM gives the highest accuracy over all the classifiers. 

Asri et al. (2016) [16] several present classifiers: SVM, NB, C4.5, and KNN for the classification 

and prediction of BC outcomes. The Wisconsin Breast Cancer (original) dataset is used where 458 

samples Benign and 241 samples Malignant are considered out of 699 samples. All experiments 

are done using WEKA libraries.  After these tasks are performed 10-fold cross-validation is used 

to check the performance of these models. When the C4.5 classifier is used it gives 95.13% 

accuracy in just 0.06s, SVM gives 97.13% in 0.07s, NB gives 95.99% in 0.05s, and KNN gives 

95.27% accuracy in just 0.01s. It is clearly shown that the accuracy obtained by SVM is far better 

than all other classifiers. That is, it is very difficult to build a model which is computationally 

efficient as well as very accurate at the same time. 
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2.1 MOTIVATION 

Breast Cancer is the most affected disease present in women worldwide. More than 2 million cases 

of invasive breast cancer are expected to be diagnosed globally by 2020, and 685000-women’s 

deaths are estimated [2]. The development of Breast Cancer and its prediction fascinated us. The 

UCI Wisconsin Machine Learning Repository Breast Cancer Dataset attracted large patients with 

multivariate attributes taken as a sample set. In the field of medicine, our proposed models covered 

later in this paper are very effective for predicting breast cancer. 
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CHAPTER 3: PROPOSED METHOD 

The proposed method provides some techniques to detect breast cancer among Benign and 

Malignant tumors. With the dataset, we first perform preprocessing tasks and then use ML models 

to predict whether a tumor causes cancer or not. To check the accuracy of our model we perform 

a 10-fold cross-validation.  

3.1 DATASET DESCRIPTION  

Dataset has the parameters namely: 

01. Id  → ID number 

02. Diagnosis → The diagnosis of breast tissues (B=Benign and M=Malignant) 

03. Radius mean → Mean of distance from center to points on the perimeter 

04. Texture mean → Standard deviation of grey scale values 

05. Perimeter mean → Mean size of the tumor 

06. Area mean → Mean of area   

07. Smoothness mean → Mean of local variation in radius lengths 

08. Compactness mean   → Mean of perimeter^2 / area - 1.0 

09. Concavity mean → Mean of the severity of concave portions of the contour 

10. Concave points mean → Mean for the number of concave portions of the contour 

11. Symmetry means 

12. Fractal dimension mean → Mean for "coastline approximation" - 1  

13. Radius se → Standard error for the mean of distances from the center to points on the 

perimeter 

14. Texture se → Standard error for the standard deviation of grey-scale values  

15. Perimeter se 

16. Area se 

17. Smoothness se → Standard error for local variation in radius lengths 

18. Compactness se → Standard error for perimeter^2 / area - 1.0  

19. Concavity se → Standard error for the severity of concave portions of the contour 

20. Concave points se → Standard error for a number of concave portions of the contour 

21. Symmetry se 

22. Fractal dimension se → Standard error for "coastline approximation" - 1  
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23. Radius worst → "worst" or largest mean value for the mean of distances from the center to 

points on the perimeter 

24. Texture worst → “worst" or largest mean value for the standard deviation of grey-scale 

values 

25. Perimeter worst 

26. Area worst 

27. Smoothness worst → "worst" or largest mean value for local variation in radius length 

28. Compactness worst → “worst" or largest mean value for perimeter^2 / area - 1.0 

29. Concavity worst → “worst" or largest mean value for the severity of concave portions of 

the contour 

30. Concave points worst → "worst" or largest mean value for the number of concave portions 

of the contour 

31. Symmetry worst 

32. Fractal dimension worst → "worst" or largest mean value for the number of concave 

portions of the contour. 

 

3.2 FLOWCHART 

 

Figure 5: Flowchart 

(Source: Self-created) 
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3.2 PRE-PROCESSING DATA  

The first is to collect the data. We use Wisconsin Breast Cancer (original) dataset because it is a 

standard dataset. As we all know in the raw dataset some values are not present. This phase is quite 

important as if the quality and quantity are not up to the mark, then the predicted result will also 

be hampered. The size of the frame shape is (569, 32). The target feature is ‘Diagnosis’, where B= 

Benign and M=Malignant. The real-valued features are computed for each cell nucleus, these are 

namely  

● Radius (the mean of distances from the center to points) 

● Texture (standard deviation of gray-scale values) 

● Smoothness  

● Area 

● Perimeter 

● Compactness (perimeter^2/area-1.0) 

● Symmetry 

● Concave point 

● Fractal dimension (coastline approximation -1)  

● Concavity 

3.3 DATA PREPARATION 

This phase is also important. Any type of data is not considered for machine learning, so we have 

to load our dataset into a good place and prepare this dataset according to the machine learning 

norms. A common way to summarize categorical variables is to visualize them with a bar chart.  
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Figure 6: Number of Benign and Malignant Samples 

(Source: Self-created) 

 

In order to remove the skewness in the dataset a log, cbrt, and sqrt functions are performed. Here 

red histogram represents skewed data and the blue histogram represents the normalized data. 

Radius Mean: 

The data for ‘Radius Mean’ is right-skewed. The log function is applied to the values of the 

column in order to remove the skewness. The result is ‘Rectified Radius Mean’. 

Figure 7: Before Log Function (Self-created)     Figure 8: After Log Function (Self-created) 
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Texture Mean: 

The data for ‘Texture Mean’ is right-skewed. The log function is applied to the values of the 

column in order to remove the skewness. The result is ‘Rectified Texture Mean’. 

 

Figure 9: Before log function (Self-created)        Figure 10: After log function (Self-created) 

 

Perimeter Mean: 

The data for ‘Perimeter Mean’ is right-skewed. The log function is applied to the values of the 

column in order to remove the skewness. The result is ‘Rectified Perimeter  Mean’. 

 

Figure 11: Before log function (Self-created)     Figure 12: After log function (Self-created) 

 

Area Mean: 

The data for ‘Area Mean’ is right-skewed. The log function is applied to the values of the 

column in order to remove the skewness. The result is ‘Rectified Area Mean’. 
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Figure 13: Before log function (Self-created)     Figure 14: After log function (Self-created) 

 

Smoothness Mean: 

The data for ‘Smoothness Mean’ is right-skewed. The sqrt function is applied to the values of the 

column in order to remove the skewness. The result is ‘Rectified Smoothness Mean’. 

 

Figure 15: Before sqrt function (Self-created)   Figure 16: After sqrt function (Self-created) 

 

Compactness Mean: 

The data for ‘Compactness Mean’ is right-skewed. The log function is applied to the values of 

the column in order to remove the skewness. The result is ‘Rectified Compactness Mean’. 
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Figure 17: Before log function (Self-created)     Figure 18: After log function (Self-created) 

 

Concavity Mean: 

The data for ‘Concavity Mean’ is right-skewed. The cbrt function is applied to the values of the 

column in order to remove the skewness. The result is ‘Rectified Concavity Mean’. 

Figure 19: Before cbrt function (Self-created)   Figure 20: After cbrt function (Self-created) 

 

Concave Points Mean: 

The data for ‘Concave Points Mean’ is right-skewed. The cbrt function is applied to the values of 

the column in order to remove the skewness. The result is ‘Rectified Concave Points Mean’. 
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Figure 21: Before cbrt function (Self-created)   Figure 22: After cbrt function (Self-created) 

 

Symmetry Mean: 

The data for ‘Symmetry Mean’ is right-skewed. The log function is applied to the values of the 

column in order to remove the skewness. The result is ‘Rectified Symmetry Mean’. 

Figure 23: Before log function (Self-created)      Figure 24: After log function (Self-created) 

 

Fractal Dimension Mean: 

The data for ‘Fractal Dimension Mean’ is right-skewed. The log function is applied to the values 

of the column in order to remove the skewness. The result is ‘Rectified Fractal Dimension 

Mean’. 
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Figure 25: Before log function (Self-created)    Figure 26: After log function (Self-created) 

 

Radius Se: 

The data for ‘Radius Se’ is right-skewed. The log function is applied to the values of the column 

in order to remove the skewness. The result is ‘Rectified Radius Se’. 

 

Figure 27: Before log function (Self-created)   Figure 28: After log function (Self-created) 

 

Textual Se: 

The data for ‘Textual Se’ is right-skewed. The log function is applied to the values of the column 

in order to remove the skewness. The result is ‘Rectified Textual Se’. 
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Figure 29: Before log function (Self-created)   Figure 30: After log function (Self-created) 

 

Perimeter Se: 

The data for ‘Perimeter Se’ is right-skewed. The log function is applied to the values of the 

column in order to remove the skewness. The result is ‘Rectified Perimeter Se’. 

 

Figure 31: Before log function (Self-created)   Figure 32: After log function (Self-created) 

 

Area Se: 

The data for ‘Area Se’ is right-skewed. The log function is applied to the values of the column in 

order to remove the skewness. The result is ‘Rectified Area Se’. 
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Figure 33: Before log function (Self-created)   Figure 34: After log function (Self-created) 

 

Smoothness Se: 

The data for ‘Smoothness Se’ is right-skewed. The log function is applied to the values of the 

column in order to remove the skewness. The result is ‘Rectified Smoothness Se’. 

Figure 35: Before log function (Self-created)    Figure 36: After log function (Self-created) 

Compactness Se: 

The data for ‘Compactness Se’ is right-skewed. The log function is applied to the values of the 

column in order to remove the skewness. The result is ‘Rectified Compactness Se’. 



29 
 

Figure 37: Before log function (Self-created)    Figure 38: After log function (Self-created) 

 

Concavity Se: 

The data for ‘Concavity Se’ is right-skewed. The cbrt function is applied to the values of the 

column in order to remove the skewness. The result is ‘Rectified Concavity Se’. 

 

Figure 39: Before log function (Self-created)   Figure 40: After log function (Self-created) 

 

Concave Points Se: 

The data for ‘Concave Points Se’ is right-skewed. The sqrt function is applied to the values of 

the column in order to remove the skewness. The result is ‘Rectified Concave Points Se’. 
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Figure 41: Before log function (Self-created)     Figure 42: After log function (Self-created) 

 

Symmetry Se: 

The data for ‘Symmetry Se’ is right-skewed. The log function is applied to the values of the 

column in order to remove the skewness. The result is ‘Rectified Symmetry Se’. 

Figure 43: Before log function (Self-created)    Figure 44: After log function (Self-created) 

 

Fractal Dimension Se: 

The data for ‘Fractal Dimension Se’ is right-skewed. The log function is applied to the values of 

the column in order to remove the skewness. The result is ‘Rectified Fractal Dimension Se’. 



31 
 

Figure 45: Before log function (Self-created)      Figure 46: After log function (Self-created) 

 

Radius Worst: 

The data for ‘Radius Worst’ is right-skewed. The log function is applied to the values of the 

column in order to remove the skewness. The result is ‘Rectified Radius Worst’. 

              

Figure 47: Before log function (Self-created)      Figure 48: After log function (Self-created) 

 

Texture Worst: 

The data for ‘Texture Worst’ is right-skewed. The sqrt function is applied to the values of the 

column in order to remove the skewness. The result is ‘Rectified Texture Worst’. 
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Figure 49: Before sqrt function (Self-created)   Figure 50: After sqrt function (Self-created) 

 

Perimeter Worst: 

The data for ‘Perimeter Worst’ is right-skewed. The log function is applied to the values of the 

column in order to remove the skewness. The result is ‘Rectified Perimeter Worst’. 

 

Figure 51: Before log function (Self-created)    Figure 52: After log function (Self-created) 

 

Area Worst: 

The data for ‘Area Worst’ is right-skewed. The log function is applied to the values of the 

column in order to remove the skewness. The result is ‘Rectified Area Worst’. 
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Figure 53: Before log function (Self-created)   Figure 54: After log function (Self-created) 

 

Smoothness Worst: 

The data for ‘Smoothness Worst’ is right-skewed. The sqrt function is applied to the values of 

the column in order to remove the skewness. The result is ‘Rectified Smoothness Worst’. 

 

Figure 55: Before sqrt function (Self-created)   Figure 56: After sqrt function (Self-created) 

 

Compactness Worst: 

The data for ‘Compactness Worst’ is right-skewed. The cbrt function is applied to the values of 

the column in order to remove the skewness. The result is ‘Rectified Compactness Worst’. 
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Figure 57: Before cbrt function (Self-created)  Figure 58: After cbrt function (Self-created) 

 

Concavity Worst: 

The data for ‘Concavity Worst’ is right-skewed. The sqrt function is applied to the values of the 

column in order to remove the skewness. The result is ‘Rectified Concavity Worst’. 

Figure 59: Before sqrt function (Self-created)   Figure 60: After sqrt function (Self-created) 

 

Symmetry Worst: 

The data for ‘Symmetry Worst’ is right-skewed. The log function is applied to the values of the 

column in order to remove the skewness. The result is ‘Rectified Symmetry Worst’. 



35 
 

Figure 61: Before log function (Self-created)    Figure 62: After log function (Self-created) 

 

Fractal Dimension Worst: 

The data for ‘Fractal Dimension Worst’ is right-skewed. The log function is applied to the values 

of the column in order to remove the skewness. The result is ‘Rectified Fractal Dimension 

Worst’. 

Figure 63: Before log function (Self-created)    Figure 64: After log function (Self-created) 

 

3.4 FEATURES SELECTION 

It is frequently done to reduce the number of input samples because it helps the model reduce the 

computational cost and improve the methods' performance. Wisconsin Breast Cancer (original) 

dataset: - Here Diagnosis (M = malignant, B = benign) is our target feature. The features of this 

dataset are id, diagnosis, radius mean, texture_mean, perimeter mean, area mean, 

smoothness_mean, compactness_mean, concavity_mean, concave points mean, symmetry_mean, 

fractal dimension mean, fractal dimension mean, texture_se, perimeter_se, area_se, 

smoothness_se, compactness_se, concavity_se, concave points_se, concave points_se, fractal 

dimension_se, radius worst, texture worst, perimeter worst, area worst, smoothness worst, 
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compactness worst, concavity worst, concave points worst, symmetry worst, fractal dimension 

worst. 

3.5 MODEL SELECTION 

In the case of supervised learning, the sample data should be labeled, that is, using this label data, 

the model can train itself to produce the output [15]. Supervised learning can be categorized as a 

classification model and regression model. The classification model is applied when the data 

samples are based on categories for example “How the weather is? Is it hot, normal, or cool?”. 

And the regression model comes when we have continuous samples like “heights” [16]. 

Unsupervised learning is another type of learning where the samples are not labeled [17]. In our 

dataset, the samples are labeled as well as the outcome result has only two sets of values, that is 

either M or B. So, for our convenience, it is better to use the classification model of the supervised 

learning technique. We proposed six types of models that help to detect breast cancer. Here we 

use, 

● Logistic Regression 

● Naive Bayes  

● Decision Tree 

● Random Forest 

● k-Neighbors Classifier 

● Support Vector Machine.  
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CHAPTER 4: RESULTS, ANALYSIS, AND COMPARISON 

A. Accuracy 

The classifier accuracy is a measure of how well the classifier can correctly predict cases into their 

correct category. It is the number of correct predictions divided by the total number of instances 

in the data set. It is worth noting that the accuracy is highly dependent on the threshold chosen by 

the classifier and can therefore change for different testing sets. Therefore, it is not the optimum 

method to compare different classifiers but may give an overview of the class. Hence, accuracy 

can be calculated using the following equation: 

 

Where TP and TN represent the True Positive and True Negative values, respectively, and FP 

and FN represent False Positive, and False Negative respectively.  

The accuracy value α lies in the range [0,1] i.e., 0≤α≤1 and α→0 mean lower accuracy. 

 

 

Figure 65: Accuracy Graph of all used models (Self-created) 

 

Table 1 depicts the comparison of the proposed method with other methods based on accuracy: 

Paper Title SVM  DT  LR  RF  KNN NB 

Breast Cancer Classification 

Using Machine Learning [10] 

 

 

    96.19% 
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Breast Cancer Detection Using 

Machine Learning Algorithms 

[11] 

   94.74% 95.90% 94.47% 

Breast Cancer Prediction using 

Machine Learning [7] 

     94.83% 

Breast Cancer Classification 

using the Supervised Learning 

Algorithms [13] 

96.70%      

Comparative Analysis of Various 

Machine Learning Techniques 

for Diagnosis of Breast Cancer 

[8] 

94.71% 92.89%  92.89%   

Breast Cancer Prediction and 

Detection Using Data Mining 

Classification Algorithms: A 

Comparative Study [9] 

   92.2%   

Prediction of Breast Cancer 

Using Supervised Machine 

Learning Techniques [14] 

92.78%  92.10%  92.23%  

BREAST CANCER 

PREDICTION USING 

MACHINE LEARNING [15] 

96.60% 95.10% 94.4%  95.80%  

Using Machine Learning 

Algorithms for Breast Cancer 

Risk Prediction and Diagnosis 

[16] 

97.13%    95.27% 95.99% 
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OUR PROPOSED MODEL 98.24

% 

96.49% 98.24

% 

97.07% 95.91% 96.49% 

Table 1: Comparison with previous papers 

(Source: Self-created) 
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CHAPTER 5: CODE 

The work was accomplished on an i3 processor and all the experiments on these above-described 

models are conducted using the ANACONDA environment, where an open-source application 

Jupyter Notebook is considered for the coding purpose. 

Import all libraries for coding: 

import numpy as np 

import pandas as pd 

import seaborn as sns 

import matplotlib.pyplot as plt 

#Spliting and Scaling data 

from sklearn.model_selection import train_test_split 

from sklearn.model_selection import cross_val_score 

from sklearn.preprocessing import StandardScaler 

from sklearn import model_selection 

#Building the Model 

from sklearn.linear_model import LogisticRegression 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn.naive_bayes import GaussianNB 

from sklearn.naive_bayes import BernoulliNB 

from sklearn.svm import LinearSVC 

from sklearn.svm import SVC 

from sklearn.feature_selection import SelectKBest 

from sklearn.feature_selection import chi2,f_classif 

#Evaluating model performance 

from sklearn.metrics import 

accuracy_score,confusion_matrix,classification_report,plot_confusion_matrix 

Logistic Regression:  

#Feature x and target y 

x=dataset.drop("diagnosis",axis=1) 
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y=dataset["diagnosis"] 

#Spliting training and testing 

x_train, x_test, y_train, y_test=train_test_split(x,y,test_size=0.3, random_state=42) 

#Standardising and training 

scaler=StandardScaler() 

scaled_x_train=scaler.fit_transform(x_train) 

scaled_x_test=scaler.transform(x_test) 

#Create an instance 

lr_model=LogisticRegression() 

#Train the model on the data 

lr_model.fit(scaled_x_train, y_train) 

#Predict on the data 

y_pred_lr=lr_model.predict(scaled_x_test) 

y_pred_lr 

#Measuring Model Performance 

score=accuracy_score(y_test, y_pred_lr, normalize=True) 

score 

#Confusion matrix 

conf_matrix_lr=confusion_matrix(y_test, y_pred_lr) 

conf_matrix_lr 

TP=conf_matrix_lr[0][0] 

FP=conf_matrix_lr[0][1] 

TN=conf_matrix_lr[1][0] 

FN=conf_matrix_lr[1][1] 

 

Recall=TP/(TP+FN) 

Precision=TP/(TP+FP) 

F1_Score=(2*(Precision*Recall))/(Precision+Recall) 

print("Recall Result: ",Recall) 

print("Precision TResult : ",Precision) 

print("F1 Score Result : ", F1_Score) 
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#Visualization of Confusion matrix 

plot_confusion_matrix(lr_model,scaled_x_test, y_test) 

all_sample_title='Accuracy Score: {0}'.format(score) 

plt.title(all_sample_title,size=10) 

#Calssification Report 

print(classification_report(y_test,y_pred_lr)) 

Decision Tree: 

#classifier_entropy=DecisionTreeClassifier() 

dt_model=DecisionTreeClassifier(criterion='entropy', max_depth=3) 

#Train the model on the data 

dt_model.fit(scaled_x_train,y_train) 

#Predict on the data 

y_pred_dt=dt_model.predict(scaled_x_test) 

y_pred_dt 

#Measuring Model Performance 

score=accuracy_score(y_test, y_pred_dt, normalize=True) 

score 

#Confusion matrix 

conf_matrix_dt=confusion_matrix(y_test, y_pred_dt) 

conf_matrix_dt 

TP=conf_matrix_dt[0][0] 

FP=conf_matrix_dt[0][1] 

TN=conf_matrix_dt[1][0] 

FN=conf_matrix_dt[1][1] 

 

Recall=TP/(TP+FN) 

Precision=TP/(TP+FP) 

F1_Score=(2*(Precision*Recall))/(Precision+Recall) 

print("Recall Result: ",Recall) 

print("Precision TResult : ",Precision) 
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print("F1 Score Result : ", F1_Score) 

#Visualization of Confusion matrix 

plot_confusion_matrix(dt_model,scaled_x_test, y_test) 

all_sample_title='Accuracy Score: {0}'.format(score) 

plt.title(all_sample_title,size=10) 

#Calssification Report 

print(classification_report(y_test, y_pred_dt)) 

Random Forest: 

#classifier_entropy=RandomForestClassifier() 

rf_model=RandomForestClassifier() 

#Train the model on the dataset 

rf_model.fit(scaled_x_train,y_train) 

y_pred_rf=rf_model.predict(scaled_x_test) 

y_pred_rf 

#Measuring Model Performance 

score=accuracy_score(y_test, y_pred_rf, normalize=True) 

Score 

conf_matrix_rf=confusion_matrix(y_test,y_pred_rf) 

print("Confusion matrix(Deciion Tree):") 

print(conf_matrix_rf) 

TP=conf_matrix_rf[0][0] 

FP=conf_matrix_rf[0][1] 

TN=conf_matrix_rf[1][0] 

FN=conf_matrix_rf[1][1] 

 

Recall=TP/(TP+FN) 

Precision=TP/(TP+FP) 

F1_Score=(2*(Precision*Recall))/(Precision+Recall) 

print("Recall Result: ",Recall) 

print("Precision TResult : ",Precision) 

print("F1 Score Result : ", F1_Score) 
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#Visualization of Confusion matrix 

plot_confusion_matrix(rf_model,scaled_x_test, y_test) 

all_sample_title='Accuracy Score: {0}'.format(score) 

plt.title(all_sample_title,size=10) 

#Calssification Report 

print(classification_report(y_test,y_pred_rf)) 

Naive Bayes: 

#Create an instance 

nb_model=BernoulliNB() 

#Train the model on the dataset 

nb_model=nb_model.fit(scaled_x_train,y_train) 

y_pred_nb=nb_model.predict(scaled_x_test) 

y_pred_nb 

#Measuring Model Performance 

score=accuracy_score(y_test, y_pred_nb, normalize=True) 

Score 

conf_matrix_nb=confusion_matrix(y_test,y_pred_nb) 

print("Confusion matrix(Deciion Tree):") 

print(conf_matrix_nb) 

TP=conf_matrix_nb[0][0] 

FP=conf_matrix_nb[0][1] 

TN=conf_matrix_nb[1][0] 

FN=conf_matrix_nb[1][1] 

 

Recall=TP/(TP+FN) 

Precision=TP/(TP+FP) 

F1_Score=(2*(Precision*Recall))/(Precision+Recall) 

print("Recall Result: ",Recall) 

print("Precision TResult : ",Precision) 

print("F1 Score Result : ", F1_Score) 

#Visualization of Confusion matrix 
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plot_confusion_matrix(nb_model,scaled_x_test, y_test) 

all_sample_title='Accuracy Score: {0}'.format(score) 

plt.title(all_sample_title,size=10) 

#Calssification Report 

print(classification_report(y_test,y_pred_nb)) 

K-Nearest Neighbour: 

#Ctreate an instance 

knn_model=KNeighborsClassifier(n_neighbors=15, p=3,metric='euclidean') 

#Train the model on the dataset 

knn_model.fit(scaled_x_train, y_train) 

#Predict on the data 

y_pred_knn=knn_model.predict(scaled_x_test) 

y_pred_knn 

#Measuring Model Performance 

score=accuracy_score(y_test, y_pred_knn, normalize=True) 

score 

#Confusion matrix 

conf_matrix_knn=confusion_matrix(y_test, y_pred_knn) 

Conf_matrix_knn 

TP=conf_matrix_knn[0][0] 

FP=conf_matrix_knn[0][1] 

TN=conf_matrix_knn[1][0] 

FN=conf_matrix_knn[1][1] 

 

Recall=TP/(TP+FN) 

Precision=TP/(TP+FP) 

F1_Score=(2*(Precision*Recall))/(Precision+Recall) 

print("Recall Result: ",Recall) 

print("Precision TResult : ",Precision) 

print("F1 Score Result : ", F1_Score) 

#Visualization of Confusion matrix 
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plot_confusion_matrix(knn_model,scaled_x_test, y_test) 

all_sample_title='Accuracy Score: {0}'.format(score) 

plt.title(all_sample_title,size=10) 

#Calssification Report 

print(classification_report(y_test, y_pred_knn)) 

Support Vector Machine: 

#Create an instance 

svc_model=SVC(kernel='rbf',C=2) 

#Train the model on the data 

svc_model.fit(scaled_x_train, y_train) 

#Predict on the data 

y_pred_svc=svc_model.predict(scaled_x_test) 

y_pred_svc 

#Measuring Model Performance 

score=accuracy_score(y_test, y_pred_svc, normalize=True) 

score 

#Confusion matrix 

conf_matrix_svc=confusion_matrix(y_test, y_pred_svc) 

Conf_matrix_svc 

TP=conf_matrix_svc[0][0] 

FP=conf_matrix_svc[0][1] 

TN=conf_matrix_svc[1][0] 

FN=conf_matrix_svc[1][1] 

 

Recall=TP/(TP+FN) 

Precision=TP/(TP+FP) 

F1_Score=(2*(Precision*Recall))/(Precision+Recall) 

print("Recall Result: ",Recall) 

print("Precision TResult : ",Precision) 

print("F1 Score Result : ", F1_Score) 

#Visualization of Confusion matrix 
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plot_confusion_matrix(svc_model,scaled_x_test, y_test) 

all_sample_title='Accuracy Score: {0}'.format(score) 

plt.title(all_sample_title,size=10) 

#Calssification Report 

print(classification_report(y_test,y_pred_svc)) 
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CHAPTER 6: CONCLUSION 

Here we have given an overall idea about how to classify Benign and Malignant tumors to predict 

breast cancer. With the help of these techniques, we can easily predict breast cancer at an early 

stage. This can be helpful for some patients who are suffering from breast cancer. From our 

proposed methodologies, it is clearly visible that Logistic Regression and SVM give us the highest 

accuracy of 98.24% to segregate which tumor is Benign and which one is Malignant. All these 

proposed experiments were conducted using python on the ANACONDA platform. For future 

studies, it is recommended that if we have more related data then, we can apply several Neural 

Networks which might give better results. 
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PROBLEM DESCRIPTION 

Breast cancer has become one of the most common forms of cancer among women across the 

world, the successful use of CAD can be proven to be highly effective to bring a better solution in 

terms of breast cancer detection [1]. Apart from that, it is noticed that cancer treatment is not 

affordable in different countries across the globe. The situation is even worse in developing nations 

where a large share of the population is in poverty. In Asian nations such as India, Bangladesh, Sri 

Lanka, and Nepal among others, there is still a lack of sufficient infrastructure to provide cures to 

women suffering from breast cancer [2]. In other developing nations across the globe, it is also 

noticed that women are not such well-informed about breast cancer. Apart from that, the lack of 

healthcare infrastructure is another reason that causes the detection of breast cancer to be delayed. 

In order to resolve this issue, machine learning can become a potential solution in this regard. This 

is also expected to help women across the globe to get their breast cancer detected early. This, in 

turn, will be helpful for such women in different nations to save their lives from this deadly disease 

for which no such standard treatment process has been discovered yet. In order to classify whether 

a tumor is benign or malignant, many machine learning algorithms are used such as Random 

Forest, Logistic Regression, Naïve Bayes, and many more. Thus, the scope of machine learning in 

the context of diagnosing breast cancer seems prominent as a computer-aided diagnosis system 

can be helpful to detect breast cancer among women of different ages. Since the detection of breast 

cancer requires the identification of breast lumps and measuring their thickness among others, it 

is required to reduce the time of each of such procedures so that the diagnosis process of breast 

cancer can be made more efficient. Since breast cancer has become one of the most common forms 

of cancer among women across the globe, it is the need of the hour to find a better diagnosis 

process for the same. Therefore, the objective of this paper is to discuss the role of machine 

learning techniques in diagnosing breast cancer. In this context, machine learning is expected to 

become helpful to bring some development in the field of breast cancer detection. Since breast 

cancer is a matter of concern around the globe, this paper remains significant in discussing the 

connection between computer science and medical science in bringing a ray of hope in terms of 

breast cancer detection.  
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CHAPTER 1: INTRODUCTION 

1.1 MACHINE LEARNING 

Machine learning (ML) is a field of inquiry devoted to understanding and building methods that 

'learn', that is, methods that leverage data to improve performance on some set of tasks [3]. 

Machine learning is a branch of artificial intelligence (AI) and computer science which focuses on 

the use of data and algorithms to imitate the way in which humans learn, gradually improving its 

accuracy. Machine learning is an important component of the growing field of data science. 

Through the use of statistical methods, algorithms are trained to make classifications or 

predictions, uncovering key insights within data mining projects. 

1.1.1 HOW MACHINE LEARNING WORKS 

According to UC Berkeley learning system of machine learning includes three parts: 

01. A Decision Process: In general, machine learning algorithms are used to make a prediction 

or classification. Based on some input data, which can be labeled or unlabeled, an algorithm 

will produce an estimate of a pattern in the data. 

02. An Error Function: An error function serves to evaluate the prediction of the model. In 

any case, where there are known examples, an error function can make a comparison to 

assess the accuracy of such a model. 

03. A Model Optimization Process: If the model can fit better to the data points in the training 

set, then weights are adjusted to reduce the discrepancy between the known example and 

the model estimate. The algorithm will repeat this to evaluate and optimize the process, 

updating weights autonomously until a threshold of accuracy has been met.  

1.1.2 METHODS OF MACHINE LEARNING:  

Machine learning are classified into three primary categories. 

1.1.2.1 Supervised Machine Learning 
Supervised learning, also known as supervised machine learning, is defined by its use of labeled 

datasets to train algorithms that classify data or predict outcomes accurately. As input data is fed 

into the model, it adjusts its weights until the model has been fitted appropriately. This occurs as 

part of the cross-validation process to ensure that the model avoids overfitting or underfitting. 

Supervised learning helps organizations solve a variety of real-world problems at scale, such as 

classifying spam in a separate folder from your inbox. Some methods used in supervised learning 

https://www.ibm.com/cloud/learn/overfitting
https://www.ibm.com/cloud/learn/underfitting
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include neural networks, Naïve Bayes, linear regression, logistic regression, random forest 

algorithm, support vector machine (SVM), and more.  

1.1.2.2 Unsupervised Machine Learning 

Unsupervised learning, also known as unsupervised machine learning, uses machine learning 

algorithms to analyze and cluster unlabeled datasets. These algorithms discover hidden patterns or 

data groupings without the need for human intervention. Its ability to discover similarities and 

differences in information makes it the ideal solution for exploratory data analysis, cross-selling 

strategies, customer segmentation, and image pattern recognition. It’s also used to reduce the 

number of features in a model through the process of dimensionality reduction; principal 

component analysis (PCA) and singular value decomposition (SVD) are two common approaches 

for this. Other algorithms used in unsupervised learning include neural networks, k-means 

clustering, probabilistic clustering methods, and more. 

1.1.2.3 Semi-Supervised Learning  

Semi-supervised learning offers an efficient medium between supervised and unsupervised 

learning. During training, it uses a smaller labeled data set to guide classification and feature 

extraction from a larger, unlabeled data set. Semi-supervised learning can solve the problem of 

having not enough labeled data (or not being able to afford to label enough data) to train a 

supervised learning algorithm [4]. 

1.2 MACHINE LEARNING TECHNIQUES 

1.2.1 Decision Tree: 

Decision trees are popular machine learning models that can be used for both regression and 

classification problems. A decision tree uses a tree-like structure of decisions along with their 

possible consequences and outcomes. In this, each internal node is used to represent a test on an 

attribute; each branch is used to represent the outcome of the test. In a decision tree, each test node 

splits the instance space into two or more sub-spaces according to a certain discrete function of the 

input values. In the simplest case, each test considers a single attribute, such that the instance space 

is portioned according to the attribute’s value. In the case of numeric attributes, the condition refers 

to a range. The instances are classified by navigating them from the root of the tree down the leaf, 

according to the outcome of the tests along the path. The below figure describes a simple use of 

the decision tree. Each node is labeled with the attribute it tests, and its branches are labeled with 

their corresponding values. Given this classifier, the analyst can predict the response of some 
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potential customers and understand the behavioral characteristics of the entire potential customer 

population [5]. 

 

Figure 1: Decision Tree Diagram 

(Source: Nallamala et al., 2019) 

In the case of numeric attributes, decision trees can be geometrically interpreted as a collection of 

hyperplanes, each orthogonal to one of the axes, since they may be considered more 

comprehensive. 

1.2.2 Random Forest: 

Random Forest is the ensemble learning method, which consists of a large number of decision 

trees. Each decision tree in a random forest predicts an outcome, and the prediction with the 

majority of votes is considered the outcome. A random forest model can be used for both 

regression and classification problems. For the classification task, the outcome of the random 

forest is taken from the majority of votes. Whereas in the regression task, the outcome is taken 

from the mean or average of the predictions generated by each tree. Each dataset is generated with 

displacement from the original dataset. Then, trees are developed using a random selection feature 

but are not pruned. This strategy makes the RF Algorithm unique and highly accurate. The RF 
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Algorithm is also very fast, resistant to extreme adaptability, and can work with as many trees as 

desired [6]. The below figure shows the working principle of the Random Forest Algorithm. 

 

 

Figure 2: Random Forest 

(Source: Mahammad et al., 2020) 

 

1.2.3 Logistic Regression: 

Logistic Regression is used to solve the classification problems in machine learning. They are 

similar to linear regression but used to predict the categorical variables. It can predict the output 

in either Yes or No, 0 or 1, True or False, etc. However, rather than giving the exact values, it 

provides the probabilistic values between 0 & 1. The most important difference between naive 

Bayes and logistic regression is that logistic regression is a discriminative classifier while naive 

Bayes is a generative classifier. Logistic regression is a type of regression that predicts the 

probability of occurrence of an event by fitting data to a logistic function. Just like any form of 

regression analysis, logistic regression makes use of several predictor variables that may be 

numerical or categorical [7]. The logistic regression hypothesis is defined as 

ℎ𝜃 (𝑥) = 𝑔(𝜃 𝑇𝑥)  

Where the function 𝑔 is a sigmoid function defined as 
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The sigmoid function has special properties that result in the values in the range [0,1], visualized 

as (below figure),  

 

Figure 3: Logistic Regression 

(Source: Sivapriya et al., 2019) 

The cost function for logistic regression is given as:  

 

1.2.4 Support Vector Machine: 

Support vector machine or SVM is a popular machine learning algorithm, which is widely used 

for classification and regression tasks. However, specifically, it is used to solve classification 

problems. The main aim of SVM is to find the best decision boundaries in an N-dimensional space, 

which can segregate data points into classes, and the best decision boundary is known as 

Hyperplane. SVM selects the extreme vector to find the hyperplane, and these vectors are known 

as support vectors [8]. Here's how a support vector machine algorithm model works: 

A. First, it finds lines or boundaries that correctly classify the training dataset. 

B. Then, from those lines or boundaries, it picks the one that has the maximum distance from 

the closest data points. 
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Figure 4: Support Vector Machine 

(Source: Joshi and Mehta, 2017) 

1.2.5 Naïve Bayes: 

Naïve Bayes is another popular classification algorithm used in machine learning. This 

classification provides practical learning algorithms and can combine observed data. Bayesian 

classification provides a useful perspective for understanding and evaluating learning algorithms. 

It calculates explicit probabilities for hypothesis and it robust the noise in input data It is called so 

as it is based on the Bayes theorem and follows the naïve (independent) assumption between the 

features which is given as 

Each naïve Bayes classifier assumes that the value of a specific variable is independent of 

any other variable/feature [9]. For example, if a fruit needs to be classified based on color, shape, 

and taste. So yellow, oval, and sweet will be recognized as mango. Here each feature is 

independent of other features. Let’s consider a general probability distribution of two values (𝑥1, 

𝑥2). Using the Bayes rule, without loss of generality we get this equation:  

(𝑥1, 𝑥2) = 𝑃(𝑥1 |𝑥2)𝑃(𝑥2)  

Similar, if there is another class variable c, we get the next equation:  

(𝑥1, 𝑥2 |𝑐) = 𝑃(𝑥1 |𝑥2, 𝑐)𝑃(𝑥2 |𝑐)  

If the situation is generalized with two variables to a conditional independence assumption for a 

set of variables 𝑥1,.…, 𝑥𝑁 conditional on another variable c, we get the following: 
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1.2.6 K-Nearest Neighbor: 

K-Nearest Neighbor is one of the simplest Machine Learning algorithms based on the Supervised 

Learning technique. The K-NN algorithm assumes the similarity between the new case/data and 

available cases and puts the new case into the category that is most similar to the available 

categories. K-NN algorithm stores all the available data and classifies a new data point based on 

the similarity. This means when new data appears then it can be easily classified into a well-suited 

category by using K- NN algorithm. The K-NN algorithm can be used for Regression as well as 

for Classification but mostly it is used for Classification problems. K-NN is a non-parametric 

algorithm, which means it does not make any assumptions on underlying data. The working 

principle behind KNN is it presumes that alike data points lie in the same surroundings. It reduces 

the burden of building a model, adapting a number of parameters, or building furthermore 

assumptions. It catches the idea of proximity-based on a mathematical formula called Euclidean 

distance, the calculation of distance between two points in a plane [7]. Suppose the two points in 

a plane are A(x0,y0) and B( x1,y1) then the Euclidean distance between them is calculated as 

follows. 

 

An object to be classified is allotted to the respective class which represents the greater number of 

its nearest neighbors. If k takes the value as 1, then the data point is classified into the category 

that contains only one nearest neighbor. Given a new input data point, the distances between that 

points to all the data points in the training dataset are computed. Choosing the value of K is the 

crucial step in the implementation of the KNN algorithm. The value of K is not fixed and it varies 

for every dataset, depending on the type of the dataset. If the value of K is less the stability of the 

prediction is less. 
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CHAPTER 2: RELATED WORK & MOTIVATION 

2.1 RELATED WORKS 

According to Amrane et al. (2018) [10] to make a good prognostic, breast cancer classification 

needs nine characteristics which are: Clump Thickness, Uniformity of Cell Size, Uniformity of 

Cell Shape, Marginal Adhesion, Single Epithelial Cell Size, Bare Nuclei, Bland Chromatin, 

Normal Nucleoli, and Mitosis. The NB and KNN these two methods are proposed to predict the 

BC in the Wisconsin breast cancer database dataset. After that k-fold cross-validation technique is 

used to check and evaluate the learning algorithms or models, by partitioning data into a learning 

set to train the model and a testing set to evaluate it. When KNN is used for BC classification it 

gives 97.5109% accuracy where the Training process, test process, and total process are 0.000735, 

0.001744, and 0.002479 respectively. And when NB is used for BC classification it gives 

96.1932% accuracy. That is, KNN is better than NB in terms of accuracy and duration. 

Sharma et al. (2018) [11] proposed some classification techniques such as Random Forest, KNN, 

and Naïve Bayes. For RF they divide the Wisconsin Diagnosis Breast Cancer (WDBC) dataset 

into two parts such as training and testing. In the training set, there are 398 samples and in the 

testing set, there are 171 samples. From the confusion matrix of KNN, it is shown that only one 

observation is misclassified as Benign and only four observations are misclassified as Malignant. 

According to NB's confusion matrix, it is shown that a total of 16 observations are misclassified 

where 7 are Benign and 9 for Malignant. After that, the classifiers are tested using 10-folds, where 

9-fold is used for training, and the last one is used for testing. Using the Random Forest algorithm 

gives an accuracy of 94.74. While using the KNN algorithm, 95.90% of accuracy is achieved. It 

gives an accuracy of 94.47% while using the Naïve Bayes algorithm. Based on these results it is 

clear that KNN gives the highest percentage value for accuracy, precision, and F1-score whereas 

RF gives the highest value for recall. 

Nallamala et al. (2019) [5] proposed several ML algorithms that are obtainable for forecasting & 

analysis of breast cancer. Such algorithms are Naïve Bayes, KNN, and SVMs. They used projected 

Ensemble Voting techniques for finding breast cancer disease. Here they use Wisconsin Breast 

Cancer (WBC) dataset for BC detection. Initially, on the dataset, they apply logistic algorithms 

and implement neural network contrivance processes. For this, a Voting Ensemble process is 

instigated for syndicating these grades and concluding precision. To do these tasks NumPy, 

Pandas, Matplotlib, and sci-kit-learn all these packages are needed. For classification, they use 
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SVM, Logistic Regression, and KNN. After applying all these methods to 16 features only it gives 

98.50% precision.  

Mohammed et al. (2020) [6] present three steps for data preprocessing, these are such as 

discretization, instances resampling, and removing the missing values. After that, 10-fold cross-

validation has been applied. Then, three classifiers namely Naïve Bayes, SMO (Sequential 

Minimal Optimization), and Decision Tree built on the J48 algorithm have been evaluated over 

the WBC dataset as well as FNA-fine needle aspirate of a breast tumor datasets. The accuracy of 

the classifiers for the test on the Breast Cancer Database without preprocessing for J48, NB, and 

SMO are 75.52%, 71.67%, and 69.58% respectively. When resample filters are applied many times 

on the Breast Cancer Database dataset classifier, gives 98.20%, 76.61%, and 95.32% accuracy for 

J48, NB, and SMO algorithms respectively. Similarly for the WBC dataset when the experiment 

is performed without preprocessing data it gives an accuracy of 94.56%, 95.99%, and 96.99% for 

J48, NB, and SMO respectively. After applying a resample filter many times on the WBC dataset 

classifier gives 99.24%, 99.12%, and 99.56% accuracy for J48, NB, and SMO algorithms 

respectively. Results show that using the resample filter in the preprocessing phase, enhances the 

performance of the classifiers. 

Sivapriya et al. (2019) [7] proposed four main classification algorithms, SVM, Random Forest, 

Logistic Regression, and Naive Bayes are used to predict breast cancer on the Breast Cancer 

dataset WBC database where 699 instances are there in which 458 are Benign and 241 are 

Malignant. To predict BC, these four classification algorithms are evaluated on the database. To 

check the efficiency the models are compared based on accuracy. Here accuracy using Logistic 

Regression, SVM, NB, and Random Forest are 99.06%, 98.59%, 94.83, and 99.76% respectively. 

From the above values, it is clearly shown that RF gives us the highest accuracy and running time 

combined because it creates multiple trees with each tree providing different results. 

Bazazeh and Shubair (2016) [12] uses three techniques which are RF, SVM, and BN for the 

detection of the Wisconsin original breast cancer dataset. They use the k-fold cross-validation 

method for testing the classifier. In this paper, they use Waikato Environment for Knowledge 

Analysis (WEKA) software as an ML tool. From the result, it shows that the accuracy is 97% 

approximately. The receiver operating characteristics (ROC) is a 2-D representation of TP rate and 

FP rate. The area under a ROC graph reflects the performance of the classifier. Based on this 

parameter when SVM is used it gives 96.4% for Benign and for Malignant it gives 96.8%. 
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Similarly, when RF is used it gives 99.8% for Benign and 99.9% for Malignant. And when BN is 

used it gives 99% for Benign and 99.2% for Malignant. So, it shows that RF has a higher chance 

of discriminating between malignant and benign cases.  

Deepa et al. (2021) [13] present four types of classification models. These models are K-Nearest 

neighbor → weighted KNN and cosine KNN, Linear support vector machine, Linear discriminant 

analysis, and ANN. First, they collect the Wisconsin dataset and then extract features from it. After 

applying various classification models, finally, they get the performance measures.  To check the 

quality of classifiers Receiver Operating Characteristics (ROC) is used. The training and testing 

class contains 80% for training and 20% for testing of the dataset respectively. Here records with 

benign labels are positive and records with malignant labels are negative. Based on these values 

when Weighted k-NN is applied it gives 96.70% accuracy. When cosine k-NN is applied it gives 

97.13% accuracy. When SVM is applied it gives 96.70% accuracy. Similarly, when LDA is 

applied it gives 95.99% accuracy. And finally, when ANN is applied it gives 97.60% accuracy. It 

shows that ANN comes out with the highest accuracy. 

Joshi and Mehta (2017) [8] proposed RF, SVM, DT, and KNN models for the classification of BC. 

These four ML techniques generate a huge percentage of differentiating the Benign and Malignant 

tumors. To check the performance of ML, some measures are used namely accuracy, sensitivity, 

precision, etc. The Wisconsin Breast Cancer (WBC) dataset is randomly divided into two parts, 

one for training which contains almost 70% of data, and another part for testing which contains 

almost 30% of data. Benign is considered for positive and Malignant is considered for negative 

cases. Based on the confusion matrix values KNN gives 100% accuracy. And SVM gives 94.714% 

accuracy. Similarly, DT gives 92.891% accuracy. And finally, for RF the values of accuracy are 

92.891%. From this result, it can be concluded that the KNN classifier is better than the other 

classifiers. 

Keleş (2019) [9] proposed an RF algorithm to classify the BC. Here he describes a method for 

creating a forest of unrelated trees using a Classification and Regression Treelike (CART-like) 

procedure that is bagging. During the classification phase, RF finds the classification value using 

more than one decision tree. After that, he uses a 10-fold cross-validation technique for measuring 

the performances. Where one part is aside and the rest of the part that is 9 folds are used for this 

purpose. It gives 92.2% accuracy on average. Here one key is important, that is the accuracy of 
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the classification methods depends on the user's parameters such as N (total number of trees), and 

m (total number of used parameters). So that the choice of parameters may increase the accuracy.   

Shravya et al. (2019) [14] present classification techniques such as SVM, K-NN, and LR with the 

Dimensionality Reduction technique i.e., Principal Component Analysis (PCA). For doing these 

tasks feature selection, feature projection, model selection, etc. are used. The dataset contains 32 

attributes which are reduced to a few numbers because of dimensionality reduction methods. In 

the case of evaluating the dataset, the LR classifier gives an accuracy of 92.10%. KNN classifier 

gives 92.23% accuracy. When SVM is used it gives an accuracy of 92.78%. The result shows that 

the best accuracy is derived by SVM with 92.78% accuracy. Here it is shown that multidimensional 

data along with feature selection, model selection, and classification may provide very good tools 

in this area.  

Gunjan et al. (2021) [15] downloaded an online Wisconsin Breast Cancer dataset having 30 

parameters and 570 real-world cases of BC. For the system to understand the format of the row 

data they transfer these row data into system understandable format using some preprocessing 

tasks. After this preprocessing, some classification techniques are applied such as LR, SVM, KNN, 

and DT. After creating an efficiency model, efficiency is checked based on accuracy. When LR is 

used it gives 94.4% of accuracy. When SVM is used it gives 96.6% of accuracy. Similarly, when 

KNN and DT are used they give 95.8% and 95.1% of accuracy respectively. From the result, it 

can be concluded that SVM gives the highest accuracy over all the classifiers. 

Asri et al. (2016) [16] several present classifiers: SVM, NB, C4.5, and KNN for the classification 

and prediction of BC outcomes. The Wisconsin Breast Cancer (original) dataset is used where 458 

samples Benign and 241 samples Malignant are considered out of 699 samples. All experiments 

are done using WEKA libraries.  After these tasks are performed 10-fold cross-validation is used 

to check the performance of these models. When the C4.5 classifier is used it gives 95.13% 

accuracy in just 0.06s, SVM gives 97.13% in 0.07s, NB gives 95.99% in 0.05s, and KNN gives 

95.27% accuracy in just 0.01s. It is clearly shown that the accuracy obtained by SVM is far better 

than all other classifiers. That is, it is very difficult to build a model which is computationally 

efficient as well as very accurate at the same time. 
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2.1 MOTIVATION 

Breast Cancer is the most affected disease present in women worldwide. More than 2 million cases 

of invasive breast cancer are expected to be diagnosed globally by 2020, and 685000-women’s 

deaths are estimated [2]. The development of Breast Cancer and its prediction fascinated us. The 

UCI Wisconsin Machine Learning Repository Breast Cancer Dataset attracted large patients with 

multivariate attributes taken as a sample set. In the field of medicine, our proposed models covered 

later in this paper are very effective for predicting breast cancer. 
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CHAPTER 3: PROPOSED METHOD 

The proposed method provides some techniques to detect breast cancer among Benign and 

Malignant tumors. With the dataset, we first perform preprocessing tasks and then use ML models 

to predict whether a tumor causes cancer or not. To check the accuracy of our model we perform 

a 10-fold cross-validation.  

3.1 DATASET DESCRIPTION  

Dataset has the parameters namely: 

01. Id  → ID number 

02. Diagnosis → The diagnosis of breast tissues (B=Benign and M=Malignant) 

03. Radius mean → Mean of distance from center to points on the perimeter 

04. Texture mean → Standard deviation of grey scale values 

05. Perimeter mean → Mean size of the tumor 

06. Area mean → Mean of area   

07. Smoothness mean → Mean of local variation in radius lengths 

08. Compactness mean   → Mean of perimeter^2 / area - 1.0 

09. Concavity mean → Mean of the severity of concave portions of the contour 

10. Concave points mean → Mean for the number of concave portions of the contour 

11. Symmetry means 

12. Fractal dimension mean → Mean for "coastline approximation" - 1  

13. Radius se → Standard error for the mean of distances from the center to points on the 

perimeter 

14. Texture se → Standard error for the standard deviation of grey-scale values  

15. Perimeter se 

16. Area se 

17. Smoothness se → Standard error for local variation in radius lengths 

18. Compactness se → Standard error for perimeter^2 / area - 1.0  

19. Concavity se → Standard error for the severity of concave portions of the contour 

20. Concave points se → Standard error for a number of concave portions of the contour 

21. Symmetry se 

22. Fractal dimension se → Standard error for "coastline approximation" - 1  
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23. Radius worst → "worst" or largest mean value for the mean of distances from the center to 

points on the perimeter 

24. Texture worst → “worst" or largest mean value for the standard deviation of grey-scale 

values 

25. Perimeter worst 

26. Area worst 

27. Smoothness worst → "worst" or largest mean value for local variation in radius length 

28. Compactness worst → “worst" or largest mean value for perimeter^2 / area - 1.0 

29. Concavity worst → “worst" or largest mean value for the severity of concave portions of 

the contour 

30. Concave points worst → "worst" or largest mean value for the number of concave portions 

of the contour 

31. Symmetry worst 

32. Fractal dimension worst → "worst" or largest mean value for the number of concave 

portions of the contour. 

 

3.2 FLOWCHART 

 

Figure 5: Flowchart 

(Source: Self-created) 
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3.2 PRE-PROCESSING DATA  

The first is to collect the data. We use Wisconsin Breast Cancer (original) dataset because it is a 

standard dataset. As we all know in the raw dataset some values are not present. This phase is quite 

important as if the quality and quantity are not up to the mark, then the predicted result will also 

be hampered. The size of the frame shape is (569, 32). The target feature is ‘Diagnosis’, where B= 

Benign and M=Malignant. The real-valued features are computed for each cell nucleus, these are 

namely  

● Radius (the mean of distances from the center to points) 

● Texture (standard deviation of gray-scale values) 

● Smoothness  

● Area 

● Perimeter 

● Compactness (perimeter^2/area-1.0) 

● Symmetry 

● Concave point 

● Fractal dimension (coastline approximation -1)  

● Concavity 

3.3 DATA PREPARATION 

This phase is also important. Any type of data is not considered for machine learning, so we have 

to load our dataset into a good place and prepare this dataset according to the machine learning 

norms. A common way to summarize categorical variables is to visualize them with a bar chart.  
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Figure 6: Number of Benign and Malignant Samples 

(Source: Self-created) 

 

In order to remove the skewness in the dataset a log, cbrt, and sqrt functions are performed. Here 

red histogram represents skewed data and the blue histogram represents the normalized data. 

Radius Mean: 

The data for ‘Radius Mean’ is right-skewed. The log function is applied to the values of the 

column in order to remove the skewness. The result is ‘Rectified Radius Mean’. 

Figure 7: Before Log Function (Self-created)     Figure 8: After Log Function (Self-created) 
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Texture Mean: 

The data for ‘Texture Mean’ is right-skewed. The log function is applied to the values of the 

column in order to remove the skewness. The result is ‘Rectified Texture Mean’. 

 

Figure 9: Before log function (Self-created)        Figure 10: After log function (Self-created) 

 

Perimeter Mean: 

The data for ‘Perimeter Mean’ is right-skewed. The log function is applied to the values of the 

column in order to remove the skewness. The result is ‘Rectified Perimeter  Mean’. 

 

Figure 11: Before log function (Self-created)     Figure 12: After log function (Self-created) 

 

Area Mean: 

The data for ‘Area Mean’ is right-skewed. The log function is applied to the values of the 

column in order to remove the skewness. The result is ‘Rectified Area Mean’. 
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Figure 13: Before log function (Self-created)     Figure 14: After log function (Self-created) 

 

Smoothness Mean: 

The data for ‘Smoothness Mean’ is right-skewed. The sqrt function is applied to the values of the 

column in order to remove the skewness. The result is ‘Rectified Smoothness Mean’. 

 

Figure 15: Before sqrt function (Self-created)   Figure 16: After sqrt function (Self-created) 

 

Compactness Mean: 

The data for ‘Compactness Mean’ is right-skewed. The log function is applied to the values of 

the column in order to remove the skewness. The result is ‘Rectified Compactness Mean’. 
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Figure 17: Before log function (Self-created)     Figure 18: After log function (Self-created) 

 

Concavity Mean: 

The data for ‘Concavity Mean’ is right-skewed. The cbrt function is applied to the values of the 

column in order to remove the skewness. The result is ‘Rectified Concavity Mean’. 

Figure 19: Before cbrt function (Self-created)   Figure 20: After cbrt function (Self-created) 

 

Concave Points Mean: 

The data for ‘Concave Points Mean’ is right-skewed. The cbrt function is applied to the values of 

the column in order to remove the skewness. The result is ‘Rectified Concave Points Mean’. 
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Figure 21: Before cbrt function (Self-created)   Figure 22: After cbrt function (Self-created) 

 

Symmetry Mean: 

The data for ‘Symmetry Mean’ is right-skewed. The log function is applied to the values of the 

column in order to remove the skewness. The result is ‘Rectified Symmetry Mean’. 

Figure 23: Before log function (Self-created)      Figure 24: After log function (Self-created) 

 

Fractal Dimension Mean: 

The data for ‘Fractal Dimension Mean’ is right-skewed. The log function is applied to the values 

of the column in order to remove the skewness. The result is ‘Rectified Fractal Dimension 

Mean’. 
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Figure 25: Before log function (Self-created)    Figure 26: After log function (Self-created) 

 

Radius Se: 

The data for ‘Radius Se’ is right-skewed. The log function is applied to the values of the column 

in order to remove the skewness. The result is ‘Rectified Radius Se’. 

 

Figure 27: Before log function (Self-created)   Figure 28: After log function (Self-created) 

 

Textual Se: 

The data for ‘Textual Se’ is right-skewed. The log function is applied to the values of the column 

in order to remove the skewness. The result is ‘Rectified Textual Se’. 
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Figure 29: Before log function (Self-created)   Figure 30: After log function (Self-created) 

 

Perimeter Se: 

The data for ‘Perimeter Se’ is right-skewed. The log function is applied to the values of the 

column in order to remove the skewness. The result is ‘Rectified Perimeter Se’. 

 

Figure 31: Before log function (Self-created)   Figure 32: After log function (Self-created) 

 

Area Se: 

The data for ‘Area Se’ is right-skewed. The log function is applied to the values of the column in 

order to remove the skewness. The result is ‘Rectified Area Se’. 
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Figure 33: Before log function (Self-created)   Figure 34: After log function (Self-created) 

 

Smoothness Se: 

The data for ‘Smoothness Se’ is right-skewed. The log function is applied to the values of the 

column in order to remove the skewness. The result is ‘Rectified Smoothness Se’. 

Figure 35: Before log function (Self-created)    Figure 36: After log function (Self-created) 

Compactness Se: 

The data for ‘Compactness Se’ is right-skewed. The log function is applied to the values of the 

column in order to remove the skewness. The result is ‘Rectified Compactness Se’. 
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Figure 37: Before log function (Self-created)    Figure 38: After log function (Self-created) 

 

Concavity Se: 

The data for ‘Concavity Se’ is right-skewed. The cbrt function is applied to the values of the 

column in order to remove the skewness. The result is ‘Rectified Concavity Se’. 

 

Figure 39: Before log function (Self-created)   Figure 40: After log function (Self-created) 

 

Concave Points Se: 

The data for ‘Concave Points Se’ is right-skewed. The sqrt function is applied to the values of 

the column in order to remove the skewness. The result is ‘Rectified Concave Points Se’. 
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Figure 41: Before log function (Self-created)     Figure 42: After log function (Self-created) 

 

Symmetry Se: 

The data for ‘Symmetry Se’ is right-skewed. The log function is applied to the values of the 

column in order to remove the skewness. The result is ‘Rectified Symmetry Se’. 

Figure 43: Before log function (Self-created)    Figure 44: After log function (Self-created) 

 

Fractal Dimension Se: 

The data for ‘Fractal Dimension Se’ is right-skewed. The log function is applied to the values of 

the column in order to remove the skewness. The result is ‘Rectified Fractal Dimension Se’. 
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Figure 45: Before log function (Self-created)      Figure 46: After log function (Self-created) 

 

Radius Worst: 

The data for ‘Radius Worst’ is right-skewed. The log function is applied to the values of the 

column in order to remove the skewness. The result is ‘Rectified Radius Worst’. 

              

Figure 47: Before log function (Self-created)      Figure 48: After log function (Self-created) 

 

Texture Worst: 

The data for ‘Texture Worst’ is right-skewed. The sqrt function is applied to the values of the 

column in order to remove the skewness. The result is ‘Rectified Texture Worst’. 
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Figure 49: Before sqrt function (Self-created)   Figure 50: After sqrt function (Self-created) 

 

Perimeter Worst: 

The data for ‘Perimeter Worst’ is right-skewed. The log function is applied to the values of the 

column in order to remove the skewness. The result is ‘Rectified Perimeter Worst’. 

 

Figure 51: Before log function (Self-created)    Figure 52: After log function (Self-created) 

 

Area Worst: 

The data for ‘Area Worst’ is right-skewed. The log function is applied to the values of the 

column in order to remove the skewness. The result is ‘Rectified Area Worst’. 
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Figure 53: Before log function (Self-created)   Figure 54: After log function (Self-created) 

 

Smoothness Worst: 

The data for ‘Smoothness Worst’ is right-skewed. The sqrt function is applied to the values of 

the column in order to remove the skewness. The result is ‘Rectified Smoothness Worst’. 

 

Figure 55: Before sqrt function (Self-created)   Figure 56: After sqrt function (Self-created) 

 

Compactness Worst: 

The data for ‘Compactness Worst’ is right-skewed. The cbrt function is applied to the values of 

the column in order to remove the skewness. The result is ‘Rectified Compactness Worst’. 
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Figure 57: Before cbrt function (Self-created)  Figure 58: After cbrt function (Self-created) 

 

Concavity Worst: 

The data for ‘Concavity Worst’ is right-skewed. The sqrt function is applied to the values of the 

column in order to remove the skewness. The result is ‘Rectified Concavity Worst’. 

Figure 59: Before sqrt function (Self-created)   Figure 60: After sqrt function (Self-created) 

 

Symmetry Worst: 

The data for ‘Symmetry Worst’ is right-skewed. The log function is applied to the values of the 

column in order to remove the skewness. The result is ‘Rectified Symmetry Worst’. 
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Figure 61: Before log function (Self-created)    Figure 62: After log function (Self-created) 

 

Fractal Dimension Worst: 

The data for ‘Fractal Dimension Worst’ is right-skewed. The log function is applied to the values 

of the column in order to remove the skewness. The result is ‘Rectified Fractal Dimension 

Worst’. 

Figure 63: Before log function (Self-created)    Figure 64: After log function (Self-created) 

 

3.4 FEATURES SELECTION 

It is frequently done to reduce the number of input samples because it helps the model reduce the 

computational cost and improve the methods' performance. Wisconsin Breast Cancer (original) 

dataset: - Here Diagnosis (M = malignant, B = benign) is our target feature. The features of this 

dataset are id, diagnosis, radius mean, texture_mean, perimeter mean, area mean, 

smoothness_mean, compactness_mean, concavity_mean, concave points mean, symmetry_mean, 

fractal dimension mean, fractal dimension mean, texture_se, perimeter_se, area_se, 

smoothness_se, compactness_se, concavity_se, concave points_se, concave points_se, fractal 

dimension_se, radius worst, texture worst, perimeter worst, area worst, smoothness worst, 
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compactness worst, concavity worst, concave points worst, symmetry worst, fractal dimension 

worst. 

3.5 MODEL SELECTION 

In the case of supervised learning, the sample data should be labeled, that is, using this label data, 

the model can train itself to produce the output [15]. Supervised learning can be categorized as a 

classification model and regression model. The classification model is applied when the data 

samples are based on categories for example “How the weather is? Is it hot, normal, or cool?”. 

And the regression model comes when we have continuous samples like “heights” [16]. 

Unsupervised learning is another type of learning where the samples are not labeled [17]. In our 

dataset, the samples are labeled as well as the outcome result has only two sets of values, that is 

either M or B. So, for our convenience, it is better to use the classification model of the supervised 

learning technique. We proposed six types of models that help to detect breast cancer. Here we 

use, 

● Logistic Regression 

● Naive Bayes  

● Decision Tree 

● Random Forest 

● k-Neighbors Classifier 

● Support Vector Machine.  
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CHAPTER 4: RESULTS, ANALYSIS, AND COMPARISON 

A. Accuracy 

The classifier accuracy is a measure of how well the classifier can correctly predict cases into their 

correct category. It is the number of correct predictions divided by the total number of instances 

in the data set. It is worth noting that the accuracy is highly dependent on the threshold chosen by 

the classifier and can therefore change for different testing sets. Therefore, it is not the optimum 

method to compare different classifiers but may give an overview of the class. Hence, accuracy 

can be calculated using the following equation: 

 

Where TP and TN represent the True Positive and True Negative values, respectively, and FP 

and FN represent False Positive, and False Negative respectively.  

The accuracy value α lies in the range [0,1] i.e., 0≤α≤1 and α→0 mean lower accuracy. 

 

 

Figure 65: Accuracy Graph of all used models (Self-created) 

 

Table 1 depicts the comparison of the proposed method with other methods based on accuracy: 

Paper Title SVM  DT  LR  RF  KNN NB 

Breast Cancer Classification 

Using Machine Learning [10] 

 

 

    96.19% 
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Breast Cancer Detection Using 

Machine Learning Algorithms 

[11] 

   94.74% 95.90% 94.47% 

Breast Cancer Prediction using 

Machine Learning [7] 

     94.83% 

Breast Cancer Classification 

using the Supervised Learning 

Algorithms [13] 

96.70%      

Comparative Analysis of Various 

Machine Learning Techniques 

for Diagnosis of Breast Cancer 

[8] 

94.71% 92.89%  92.89%   

Breast Cancer Prediction and 

Detection Using Data Mining 

Classification Algorithms: A 

Comparative Study [9] 

   92.2%   

Prediction of Breast Cancer 

Using Supervised Machine 

Learning Techniques [14] 

92.78%  92.10%  92.23%  

BREAST CANCER 

PREDICTION USING 

MACHINE LEARNING [15] 

96.60% 95.10% 94.4%  95.80%  

Using Machine Learning 

Algorithms for Breast Cancer 

Risk Prediction and Diagnosis 

[16] 

97.13%    95.27% 95.99% 
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OUR PROPOSED MODEL 98.24

% 

96.49% 98.24

% 

97.07% 95.91% 96.49% 

Table 1: Comparison with previous papers 

(Source: Self-created) 
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CHAPTER 5: CODE 

The work was accomplished on an i3 processor and all the experiments on these above-described 

models are conducted using the ANACONDA environment, where an open-source application 

Jupyter Notebook is considered for the coding purpose. 

Import all libraries for coding: 

import numpy as np 

import pandas as pd 

import seaborn as sns 

import matplotlib.pyplot as plt 

#Spliting and Scaling data 

from sklearn.model_selection import train_test_split 

from sklearn.model_selection import cross_val_score 

from sklearn.preprocessing import StandardScaler 

from sklearn import model_selection 

#Building the Model 

from sklearn.linear_model import LogisticRegression 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn.naive_bayes import GaussianNB 

from sklearn.naive_bayes import BernoulliNB 

from sklearn.svm import LinearSVC 

from sklearn.svm import SVC 

from sklearn.feature_selection import SelectKBest 

from sklearn.feature_selection import chi2,f_classif 

#Evaluating model performance 

from sklearn.metrics import 

accuracy_score,confusion_matrix,classification_report,plot_confusion_matrix 

Logistic Regression:  

#Feature x and target y 

x=dataset.drop("diagnosis",axis=1) 
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y=dataset["diagnosis"] 

#Spliting training and testing 

x_train, x_test, y_train, y_test=train_test_split(x,y,test_size=0.3, random_state=42) 

#Standardising and training 

scaler=StandardScaler() 

scaled_x_train=scaler.fit_transform(x_train) 

scaled_x_test=scaler.transform(x_test) 

#Create an instance 

lr_model=LogisticRegression() 

#Train the model on the data 

lr_model.fit(scaled_x_train, y_train) 

#Predict on the data 

y_pred_lr=lr_model.predict(scaled_x_test) 

y_pred_lr 

#Measuring Model Performance 

score=accuracy_score(y_test, y_pred_lr, normalize=True) 

score 

#Confusion matrix 

conf_matrix_lr=confusion_matrix(y_test, y_pred_lr) 

conf_matrix_lr 

TP=conf_matrix_lr[0][0] 

FP=conf_matrix_lr[0][1] 

TN=conf_matrix_lr[1][0] 

FN=conf_matrix_lr[1][1] 

 

Recall=TP/(TP+FN) 

Precision=TP/(TP+FP) 

F1_Score=(2*(Precision*Recall))/(Precision+Recall) 

print("Recall Result: ",Recall) 

print("Precision TResult : ",Precision) 

print("F1 Score Result : ", F1_Score) 
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#Visualization of Confusion matrix 

plot_confusion_matrix(lr_model,scaled_x_test, y_test) 

all_sample_title='Accuracy Score: {0}'.format(score) 

plt.title(all_sample_title,size=10) 

#Calssification Report 

print(classification_report(y_test,y_pred_lr)) 

Decision Tree: 

#classifier_entropy=DecisionTreeClassifier() 

dt_model=DecisionTreeClassifier(criterion='entropy', max_depth=3) 

#Train the model on the data 

dt_model.fit(scaled_x_train,y_train) 

#Predict on the data 

y_pred_dt=dt_model.predict(scaled_x_test) 

y_pred_dt 

#Measuring Model Performance 

score=accuracy_score(y_test, y_pred_dt, normalize=True) 

score 

#Confusion matrix 

conf_matrix_dt=confusion_matrix(y_test, y_pred_dt) 

conf_matrix_dt 

TP=conf_matrix_dt[0][0] 

FP=conf_matrix_dt[0][1] 

TN=conf_matrix_dt[1][0] 

FN=conf_matrix_dt[1][1] 

 

Recall=TP/(TP+FN) 

Precision=TP/(TP+FP) 

F1_Score=(2*(Precision*Recall))/(Precision+Recall) 

print("Recall Result: ",Recall) 

print("Precision TResult : ",Precision) 
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print("F1 Score Result : ", F1_Score) 

#Visualization of Confusion matrix 

plot_confusion_matrix(dt_model,scaled_x_test, y_test) 

all_sample_title='Accuracy Score: {0}'.format(score) 

plt.title(all_sample_title,size=10) 

#Calssification Report 

print(classification_report(y_test, y_pred_dt)) 

Random Forest: 

#classifier_entropy=RandomForestClassifier() 

rf_model=RandomForestClassifier() 

#Train the model on the dataset 

rf_model.fit(scaled_x_train,y_train) 

y_pred_rf=rf_model.predict(scaled_x_test) 

y_pred_rf 

#Measuring Model Performance 

score=accuracy_score(y_test, y_pred_rf, normalize=True) 

Score 

conf_matrix_rf=confusion_matrix(y_test,y_pred_rf) 

print("Confusion matrix(Deciion Tree):") 

print(conf_matrix_rf) 

TP=conf_matrix_rf[0][0] 

FP=conf_matrix_rf[0][1] 

TN=conf_matrix_rf[1][0] 

FN=conf_matrix_rf[1][1] 

 

Recall=TP/(TP+FN) 

Precision=TP/(TP+FP) 

F1_Score=(2*(Precision*Recall))/(Precision+Recall) 

print("Recall Result: ",Recall) 

print("Precision TResult : ",Precision) 

print("F1 Score Result : ", F1_Score) 
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#Visualization of Confusion matrix 

plot_confusion_matrix(rf_model,scaled_x_test, y_test) 

all_sample_title='Accuracy Score: {0}'.format(score) 

plt.title(all_sample_title,size=10) 

#Calssification Report 

print(classification_report(y_test,y_pred_rf)) 

Naive Bayes: 

#Create an instance 

nb_model=BernoulliNB() 

#Train the model on the dataset 

nb_model=nb_model.fit(scaled_x_train,y_train) 

y_pred_nb=nb_model.predict(scaled_x_test) 

y_pred_nb 

#Measuring Model Performance 

score=accuracy_score(y_test, y_pred_nb, normalize=True) 

Score 

conf_matrix_nb=confusion_matrix(y_test,y_pred_nb) 

print("Confusion matrix(Deciion Tree):") 

print(conf_matrix_nb) 

TP=conf_matrix_nb[0][0] 

FP=conf_matrix_nb[0][1] 

TN=conf_matrix_nb[1][0] 

FN=conf_matrix_nb[1][1] 

 

Recall=TP/(TP+FN) 

Precision=TP/(TP+FP) 

F1_Score=(2*(Precision*Recall))/(Precision+Recall) 

print("Recall Result: ",Recall) 

print("Precision TResult : ",Precision) 

print("F1 Score Result : ", F1_Score) 

#Visualization of Confusion matrix 



45 
 

plot_confusion_matrix(nb_model,scaled_x_test, y_test) 

all_sample_title='Accuracy Score: {0}'.format(score) 

plt.title(all_sample_title,size=10) 

#Calssification Report 

print(classification_report(y_test,y_pred_nb)) 

K-Nearest Neighbour: 

#Ctreate an instance 

knn_model=KNeighborsClassifier(n_neighbors=15, p=3,metric='euclidean') 

#Train the model on the dataset 

knn_model.fit(scaled_x_train, y_train) 

#Predict on the data 

y_pred_knn=knn_model.predict(scaled_x_test) 

y_pred_knn 

#Measuring Model Performance 

score=accuracy_score(y_test, y_pred_knn, normalize=True) 

score 

#Confusion matrix 

conf_matrix_knn=confusion_matrix(y_test, y_pred_knn) 

Conf_matrix_knn 

TP=conf_matrix_knn[0][0] 

FP=conf_matrix_knn[0][1] 

TN=conf_matrix_knn[1][0] 

FN=conf_matrix_knn[1][1] 

 

Recall=TP/(TP+FN) 

Precision=TP/(TP+FP) 

F1_Score=(2*(Precision*Recall))/(Precision+Recall) 

print("Recall Result: ",Recall) 

print("Precision TResult : ",Precision) 

print("F1 Score Result : ", F1_Score) 

#Visualization of Confusion matrix 
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plot_confusion_matrix(knn_model,scaled_x_test, y_test) 

all_sample_title='Accuracy Score: {0}'.format(score) 

plt.title(all_sample_title,size=10) 

#Calssification Report 

print(classification_report(y_test, y_pred_knn)) 

Support Vector Machine: 

#Create an instance 

svc_model=SVC(kernel='rbf',C=2) 

#Train the model on the data 

svc_model.fit(scaled_x_train, y_train) 

#Predict on the data 

y_pred_svc=svc_model.predict(scaled_x_test) 

y_pred_svc 

#Measuring Model Performance 

score=accuracy_score(y_test, y_pred_svc, normalize=True) 

score 

#Confusion matrix 

conf_matrix_svc=confusion_matrix(y_test, y_pred_svc) 

Conf_matrix_svc 

TP=conf_matrix_svc[0][0] 

FP=conf_matrix_svc[0][1] 

TN=conf_matrix_svc[1][0] 

FN=conf_matrix_svc[1][1] 

 

Recall=TP/(TP+FN) 

Precision=TP/(TP+FP) 

F1_Score=(2*(Precision*Recall))/(Precision+Recall) 

print("Recall Result: ",Recall) 

print("Precision TResult : ",Precision) 

print("F1 Score Result : ", F1_Score) 

#Visualization of Confusion matrix 
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plot_confusion_matrix(svc_model,scaled_x_test, y_test) 

all_sample_title='Accuracy Score: {0}'.format(score) 

plt.title(all_sample_title,size=10) 

#Calssification Report 

print(classification_report(y_test,y_pred_svc)) 
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CHAPTER 6: CONCLUSION 

Here we have given an overall idea about how to classify Benign and Malignant tumors to predict 

breast cancer. With the help of these techniques, we can easily predict breast cancer at an early 

stage. This can be helpful for some patients who are suffering from breast cancer. From our 

proposed methodologies, it is clearly visible that Logistic Regression and SVM give us the highest 

accuracy of 98.24% to segregate which tumor is Benign and which one is Malignant. All these 

proposed experiments were conducted using python on the ANACONDA platform. For future 

studies, it is recommended that if we have more related data then, we can apply several Neural 

Networks which might give better results. 
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1. Introduction:  
 

Phishing: 

Phishing is a type of cyber security attack where the attacker sends a malicious link 

to the target through the different massaging platform (Email, Text message, Social 

Media). The message is designed to trick the person into clicking the link. Once the 

Recipient of the message clicks the link different actions can be performed by the 

attacker. The attacker may deploy malicious software on the victim’s device or may 

trick the victim into revealing sensitive information through a range of social 

engineering techniques. This information could be bank account information, 

usernames and passwords of different social media platforms, sensitive files.  

 The phishing attacks have become increasingly sophisticated and often 

transparently mirror the site being targeted, allowing the attacker to observe 

everything while the victim is navigating the site, and traverse any additional security 

boundaries with the victim. As of 2020, phishing is by far the most common attack 

performed by cybercriminals 

 The first recorded use of the term "phishing" was in 

the cracking toolkit AOHell created by Koceilah Rekouche in 1995. Attempts to 

prevent or mitigate the impact of phishing incidents include legislation, user training, 

public awareness, and technical security measures Phishing awareness has become 

important at home and at the work place. 

Types of phishing: 

Email phishing: 

Most phishing messages are delivered by email spam, and are not personalized or 
targeted to a specific individual or company–this is termed "bulk" phishing. The 
content of a bulk phishing message varies widely depending on the goal of the 
attacker–common targets for impersonation include banks and financial services, 
email and cloud productivity providers, and streaming services. Attackers may use 
the credentials obtained to directly steal money from a victim, although 
compromised accounts are often used instead as a jumping-off point to perform 
other attacks, such as the theft of proprietary information. 

Spear phishing: 

Spear phishing involves an attacker directly targeting a specific organization or 
person with tailored phishing communications. This is essentially the creation and 
sending of emails to a particular person to make the person think the email is 
legitimate. In contrast to bulk phishing, spear phishing attackers often gather and use 
personal information about their target to increase their probability of success of the 



attack. Spear phishing typically targets executives or those that work in financial 
departments that have access to the organization's sensitive financial data and 
services. 

Whaling and CEO fraud: 

Whaling refers to spear phishing attacks directed specifically at senior executives and 
other high-profile targets.] The content will be likely crafted to be of interest to the 
person or role targeted - such as a subpoena or customer complaint.  

CEO fraud is effectively the opposite of whaling; it involves the crafting of spoofed 
emails purportedly from senior executives with the intention of getting other 
employees at an organization to perform a specific action, usually the wiring of 
money to an offshore account. 

Voice phishing: 

Voice phishing, or vishing. is the use of telephony (often Voice over IP telephony) to 
conduct phishing attacks. Attackers will dial a large quantity of telephone numbers 
and play automated recordings - often made using text-to-speech synthesizers - that 
make false claims of fraudulent activity on the victim's bank accounts or credit cards. 
The calling phone number will be spoofed to show the real number of the bank or 
institution impersonated. The victim is then directed to call a number controlled by 
the attackers,  

SMS phishing, page hijacking, calendar phishing are also some of the advance 
phishing techniques. 

There are some basic ways to prevent phishing attacks, like keeping updated 
with the latest phishing techniques, installing an anti phishing toolbar, verifying a 
site’s security and using firewalls. 

Here in this project we are trying to develop a machine learning approach to 
detect malicious link. The phishing links are somewhat different from the 
conventional links. These links may contain additional ‘.’, additional ‘/’ or may include 
scripts. We extract these features from link. We feed these extracted features to 
machine learning algorithms to classify whether it is a phishing link or not. 

 

 

 

  

https://en.wikipedia.org/wiki/Phishing#cite_note-23


 

2. Requirement and analysis: 
All the experiments were conducted on Google Colaboratory (Free version) 

platform. Google colaboratory is the most popular hosted Jupyter notebook service 

in the world. Google colaboratory is an appealing choice for millions of users because 

it is free, and requires only a google account to access, and provides decent speed 

and availability in general. 

Google colaboratory free version has some limitations, which includes 

underpowered K80 GPUs and limitations with RAM. 

Most of these problems were resolved in Google Colaboratory Pro version, which is a 

paid version. Google Colaboratory Pro was released in 2020. Google Colaboratory 

Pro comes with faster GPUs and additional RAM. Initially Google Colaboratory Pro 

was available in USA and Canada. Later the service was extended to countries like 

Japan, Brazil, India, UK, France & Germany. 

Google Colaboratory Free version provides the following Resources: 

GPU: K80 

Architecture: Kepler 

GPU RAM: 12GB 

CPU: 2 core CPU 

System RAM: 13GB 

 

3. Model Design 
 

3.1 Dataset & Pre-processing:   
A decent processed labeled data is one of the most important components for 

any machine learning project. During our studies we came across many 

datasets present in Kaggle. The dataset we considered for our experiments is 

the one produces by the group of researchers namely [1] Grega Vrbancic, 

Iztok Fister Jr. and Vili Podgorelec. According to them they prepared this 

dataset for the purpose of building and evaluating various classification 

methods for the task of detecting phishing websites based on uniform 

resource locator (URL). The dataset contains 111 features of 88646 websites 

belonging to both phishing and non-phishing websites. This paper presents 

two dataset variations that consists of 58,645 and 88,647 websites labeled as 

legitimate or phishing. For the phishing websites, only the ones from the 



PhishTank registry were included, which are verified from multiple users. For 

the legitimate websites, they included the websites from publicly available, 

community labelled and organized lists. According to the authors their 

prepared dataset can be divided into six groups. 

1) Dataset attributes based on URL 
2) Dataset attributes based on domain URL 
3) Dataset attributes based on URL directory 
4) Dataset attributes based on URL file name 
5) Dataset attributes on URL parameters 
6) Dataset attributes based on resolving URL and external services 

 
 

 
 
    Image from [1]  

 

According to them the second variant of the dataset is comprised of 88,647 instances 

with 30,647 instances labelled as phishing and 58,000 instances labelled as 

legitimate, the purpose of which is to mimic the real-world situation where there are 

more legitimate websites present. 

  

In pre-processing phase we calculated the co-
relation of each column with respect to the 
label. It has been observed that a number of 
columns do not show any co-relation with the 
label. Therefore we have decided to drop 
those columns to build a robust model. 
 
          Furthermore, standardised data has been 
used to some of the models like Support 
Vector Machine(SVM), Artificial Neural 
Network(ANN) and K-Nearest Neighbourhood. 
The  aforementioned algorithms are known to 
provide better results with standardised 
dataset. 

 



            We perform standardization by subtracting the mean from the data and 

dividing the result by standard deviation. The standardization process effectively 

converts 

the dataset into standard normal distribution. A dataset in normal-distribution has its 

mean located at zero and whose standard deviation is one.  

 After the above mentioned steps the whole dataset is then split into training 

and testing dataset considering twenty percent of the data for the testing purpose. 

 After the train test split the data is fed directly into different machine learning 

model to classify phishing and non-phishing. 

 

3.2 Algorithms: 

In the experiment we have used different machine learning algorithms and 

developed a two layered neural network for the classification of the phishing and 

non-phishing links. Followings are the algorithms that has been used in our 

experiment. 

3.2.1 K-Nearest Algorithm (KNN): 
The k-nearest neighbors (KNN) algorithm is a supervised algorithm that is used 
to solve classification and regression problem. The KNN algorithm relies on 
the labeled input data to learn a function that produces an appropriate output 
when given new un-labelled data. The KNN algorithm assumes that similar 
things exist in close proximity. In KNN algorithm the value of K (no. of 
neighbor) is given as a parameter. Once we load the data for each datapoint 
we calculate the distance between the query example and the current 
example from the data. We add the distance and index of the example to an 
ordered collection. We sort the collection of datapoints and their 
corresponding distances in ascending order and pick the first K entries from 
the sorted collection. We get the labels of the selected K entries, if regression 
return the mean of the K labels. If classification, return the mode of the K-
labels. 



To select the value of K we run 
the same algorithm several times 
with different K values. As we 
increase the value of K, our 
prediction become more stable 
due to majority voting. The 
disadvantage of KNN is that it 
becomes slower se as the volume 
of data increases. 

 
 

3.2.2 Decision Tree: 

Decision tree is one of the most powerful and popular tools for classification and 

prediction. Decision tree is a supervised learning algorithm. There is a root node from 

where the branching starts. The nodes at the terminal level are called leaf nodes and 

the nodes in-between root node and leaf nodes are called internal node. Different 

ordering of the internal nodes can give decision tree. Different ordering can be 

generated based on information gain. We can calculate the information gain by 

calculating the change of entropy before and after splitting an attribute. 

 
Entropy: The entropy of a set of m 
distinct values is the minimum no. of 
yes/no questions required to determine 
an unknown value from the m options. 
The entropy in information technology 
became an important concept.  

 

 

 

Information Gain: It is a metric 
which decides which attributes 
goes into a certain decision node. 
It is based on the decrease in 
entropy after a dataset is split on 
an attribute. 

 



 

    Picture courtesy: GeeksForGeeks 

 

 

3.2.3 Random Forest: 

Random forest is an improvement over the classic decision tree algorithms. The 

Random forest is a supervised machine learning algorithm. It uses multiple trees to 

reduce the risk of overfitting. The training time is less in random forest. Runs 

efficiently on large database. For large data, it produces highly accurate predictions. 

Random forest can maintain accuracy when a large proportion of data is missing. 

Random forest or random decision forest is a method that operates by constructing 

multiple decision trees during training phase. The decision of the multiple of the 

trees is chosen by the random forest as the final decision. The fundamental concept 

behind random forest is a simple but power one – The wisdom of crowds. In data 

science speak, the reason that the random forest model works so well is a large 

number of relatively un correlated model (trees) operating as a whole will 

outperform any of the individual constituent models. The reason for this is that the 

trees protect each other from their individual errors. 



 

 

 

Picture courtesy Wikipedia 

 

 

3.2.4 Naïve Bayes: 

A Naive Bayes classifier is a probabilistic machine learning model that’s used for 

classification task. The classifier is based on the Bayes theorem.  

Using bayes theorem we can find the 
probability of A happening, given that B 
has occurred. Here, B is the evidence 
and A is the hypothesis. The assumption 
made here is that the predictors / 
features are independent. That is 
presence of one particular does not 
affect the other. Hence it is called naive 

 
 

 

 



 

Types of Naïve Bayes:  

Multinomial Naive Bayes: 

This is mostly used for document classification problem, i.e whether a document 
belongs to the category of sports, politics, technology etc. The features/predictors 
used by the classifier are the frequency of the words present in the document. 

 

Bernoulli Naive Bayes: 

This is similar to the multinomial naive bayes but the predictors are boolean variables. 
The parameters that we use to predict the class variable take up only values yes or no, 
for example if a word occurs in the text or not. 

 

Gaussian Naive Bayes: 

When the predictors take up a continuous value and are not discrete, we assume that 
these values are sampled from a gaussian distribution 

Naïve bayes algorithms are mostly used in sentiment analysis, spam filtering, 
recommendation systems etc. They are fast and easy to implement but their biggest 
disadvantage is that the requirement of predictors to be independent. In most of the 
real-life cases, the predictors are dependent, this hinders the performance of the 
classifier. 

 

 

 

3.2.5 Support Vector Machine: 
The objective of the support vector machine algorithm is to find a hyperplane in an 

N-dimensional space (N – the number of features) that distinctly classifies the data 

points. To separate the two classes of data points, there are many possible 

hyperplanes that could be chosen. The objective is to find a plane that has the 

maximum margin. i.e. the maximum distance between data points of both classes. 

Maximizing the margin distance provides some reinforcement so that future data 

points can be classified with more confidence. Hyperplanes are decision boundaries 

that help classify the data points. Data points falling on either side of thr hyperplane 

can be attributed to different classes. 



Support vectors are data points 
that are closer to the 
hyperplane and influence the 
position and orientation of the 
hyperplane. Using these 
support vectors, we maximize 
the margin of the classifier. 
Deleting the support vectors 
will change the position of the 
hyperplane These are the points 
that will build the SVM.  

      Picture courtesy TowardsDataScience 

 

 

 3.2.6. Logistic Regression: 

The logistic regression is very much similar to linear regression. logistic regression is 

used when the dependent variable(target) is categorical i.e. logistic regression 

predicts whether something is true or false instead of predicting something 

continuous. Logistic regression estimates the probability of an event occurring, based 

on a given dataset of independent variables. Since the outcome is a probability the 

dependent variable is bounded between 0 and 1. 

 

The logistic regression is 
named for the function used 
at the core of the method. 
The logistic function also 
called sigmoid function was 
developed by statisticians to 
describe properties of 
population growth in ecology. 
It is an ‘S’ shaped curve that 
can take real valued number 
and map it into a value 
between 0 and 1, but never 
exactly at those limits. 
 
f(x) = 1 / (1 + e-x) 

 

 

 



Types of Logistic Regression: 

1. Binary Logistic Regression 
2. Multinominal Logistic Regression 
3. Ordinal Logistic Regression 

 

Logistic regression’s ability to provide probabilities and classify new samples using 

continuous and discrete measurements makes it a popular machine learning 

method. 

 

 

3.2.7. Artificial Neural Network (ANN): 
 

The term ‘Artificial Neural Network’ is derived from biological networks that 

develop the structure of a human brain. Similar to human brain that has neurons 

interconnected to one another, artificial neural networks also have neurons that 

are interconnected to one another in various layers of the networks. Here the 

neurons are known as nodes. 

 Artificial Neural Networks primarily consists of three layers: 

Input Layer: As the name suggests, it accepts inputs in several different formats 

provided by the programmer. 

Hidden Layer: The hidden layer presents in-between input and output layers. It 

performs all the calculations to find hidden features and patterns. 

Output Layer: The input goes through a series of transformations using the 

hidden layer, which finally results in output that is conveyed using this layer. 

The artificial neural network takes input and computes the weighted sum of the 

inputs and includes a bias. This computation is represented in the form of a 

transfer function. 

It determines weighted total is passed as 
an input to an activation function to 
produce the output. Activation functions 
choose whether a node should fire or not. 
Only those who are fired make it to the 
output layer. 

 

 



 

   Picture courtesy: Zhenzhu Meng, Researchgate 

 
 

4. Implementation and testing 
 
4.1 Code for building the model and evaluation 
 

Required libraries: 

import os 
 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

import seaborn as sns 

 
from sklearn.model_selection import GridSearchCV 

from sklearn.model_selection import train_test_split 

from sklearn.model_selection import cross_val_score 

from sklearn.model_selection import RepeatedStratifiedKFold 

 

from sklearn.preprocessing import StandardScaler 
 

from sklearn import metrics 

from sklearn.metrics import classification_report, confusion_matrix 

 

from sklearn.neighbors import KNeighborsClassifier 



from sklearn.tree import DecisionTreeClassifier 

from sklearn.linear_model import LogisticRegression 

from sklearn.ensemble import RandomForestClassifier 
from sklearn import svm 

from sklearn.naive_bayes import BernoulliNB 

 

from keras.models import Sequential 

from keras.layers import Convolution2D as Conv2D 

from keras.layers import Dense, MaxPooling2D, Flatten, Dropout 

 

Data pre-processing: 

path4 = '/content/drive/MyDrive/datasets/phishing website 

datasets/Phishing_website_dataset_by_grega_et_al' 

df4 = pd.read_csv(os.path.join(path4, 'dataset_full.csv')) 

 

print(df4 shape : {}'.format(df4.shape)) 

df4 shape : (88647, 112) 

 
sns.heatmap(df4.corr()) 

 

 
 
print(df4['phishing'].unique()) 

 

[1 0] 

 

sns.countplot(df4['phishing']) 

 



 
 

cor = df4.corr()['phishing'].sort_values() 

print(cor) 

 

time_domain_activation   -0.441875 

qty_dot_domain           -0.260480 
time_domain_expiration   -0.165915 

qty_mx_servers           -0.079580 

qty_nameservers          -0.066336 

                            ...    

qty_plus_domain                NaN 

qty_asterisk_domain            NaN 
qty_hashtag_domain             NaN 

qty_dollar_domain              NaN 

qty_percent_domain             NaN 

Name: phishing, Length: 112, dtype: float64 

 

for i in cols : 

  if i is 'phishing' : 

    continue 

  if np.isnan(cor[i]) : 

    df4.drop(i, axis = 1, inplace = True) 

 

After dropping the columns that does not show any co-relation 
 

sns.heatmap(df4.corr()) 

 

 



 

print(df4.shape) 

(88647, 99) 
 

Splitting the dataset into testing and training dataset: 
 

x = df4.iloc[:, 0 : 98] 

y = df4.iloc[:, 98] 

Shape of x and y 
 

print(x.shape) 

print(y.shape) 

 

(88647, 98) 

(88647,) 
 

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2, 

random_state = 2) 

 

Performing Standardization: 
 

st_x = StandardScaler() 

X_train = st_x.fit_transform(x_train) 

X_test = st_x.fit_transform(x_test) 

 

4.1.1 K-Nearest Algorithm (KNN): 

Using simple KNN classifier: 

knn = KNeighborsClassifier(n_neighbors = 5, metric = 'minkowski', p = 2) 

model = knn.fit(X_train, y_train) 

 

y_pred = model.predict(X_test) 

 

score = metrics.accuracy_score(y_test, y_pred) 

print(score) 

 
0.9527354765933446 

 

cm = confusion_matrix(y_test, y_pred) 

heatmap = sns.heatmap(cm, annot = True, fmt = "d") 

plt.xlabel('Predicted', fontsize = 20) 

plt.ylabel('Actual', fontsize = 20) 

plt.title('Accuracy Score {0}'.format(score), fontsize = 20) 

plt.show() 

 



 
 

 

print(classification_report(y_test, y_pred)) 
 

 

      precision    recall  f1-score   support 

 

           0       0.96      0.96      0.96     11604 

           1       0.93      0.93      0.93      6126 

 

    accuracy                           0.95     17730 

   macro avg       0.95      0.95      0.95     17730 

weighted avg       0.95      0.95      0.95     17730 

 

KNN classifier with K-fold cross validation 
 

scores = cross_val_score(model, X_train, y_train, scoring = 'accuracy', cv 

= 10) 

print(scores) 

print('Mean Accuracy : ', scores.mean()) 
 

[0.9569938  0.95487874 0.95530175 0.95276368 0.95149464 0.94952059 

 0.95755781 0.94711606 0.95416725 0.95628261] 

Mean Accuracy :  0.9536076926949892 

 

KNN Classifier with variable neighbour value 
 

k = range(1, 15) 

scores = [] 

for i in k : 

  model = KNeighborsClassifier(n_neighbors = i, metric = 'minkowski') 

  score = cross_val_score(model, X_train, y_train, scoring = 'accuracy', 
cv = 10) 

  scores.append(score.mean()) 

 



print(scores) 

print(max(scores)) 

print(scores.index(max(scores))) 
 

[0.9516617546944115, 0.9476429691744809, 0.9534948716400754, 

0.9517745399564742, 0.9536076926949892, 0.9518027566540302, 

0.9520424752967684, 0.9506746972302617, 0.9507311246598984, 

0.9500402033256649, 0.9497440612302736, 0.9489402731058165, 

0.9486300405580727, 0.9483339163591067] 

0.9536076926949892 

4 

 

plt.plot(k, scores) 

plt.show() 

 

 
 

 

4.1.2 Using decision tree classifier: 
 

model = DecisionTreeClassifier(criterion = 'entropy', random_state = 0) 

model.fit(x_train, y_train) 

y_pred = model.predict(x_test) 

train_accuracy = model.score(x_train, y_train) 

test_accuracy = model.score(x_test, y_test) 

score = metrics.accuracy_score(y_test, y_pred) 

print('accuracy', score) 

print('Training accuracy : ', train_accuracy) 

print('Test accuracy : ', test_accuracy) 

 
accuracy 0.956175972927242 

Training accuracy :  0.9999153940522019 

Test accuracy :  0.956175972927242 

 

cm = confusion_matrix(y_test, y_pred) 

sns.heatmap(cm, annot = True, fmt = 'd') 
plt.xlabel('Predicted', fontsize = 20) 

plt.ylabel('Actual', fontsize = 20) 

plt.title('Accuracy Score = {0}'.format(score), fontsize = 20) 

plt.show() 



 

 
 

print(classification_report(y_test, y_pred)) 
 

              precision    recall  f1-score   support 

 

           0       0.97      0.97      0.97     11604 

           1       0.94      0.94      0.94      6126 

 

    accuracy                           0.96     17730 

   macro avg       0.95      0.95      0.95     17730 

weighted avg       0.96      0.96      0.96     17730 

 

 

Decision Tree with K-fold cross-validation: 
 

scores = cross_val_score(model, x_train, y_train, scoring = 'accuracy', cv 

= 10) 

print(scores) 

print('Mean Accuracy : ', scores.mean()) 
 

[0.95375071 0.95459673 0.95896785 0.95755781 0.95149464 0.94937958 

 0.95459673 0.95134678 0.95303906 0.95233394] 

Mean Accuracy :  0.9537063835277163 

 

4.1.3. Using Random Forest Classifier: 
 

model = RandomForestClassifier(n_estimators = 100) 

model.fit(x_train, y_train) 

y_pred = model.predict(x_test) 

score = metrics.accuracy_score(y_test, y_pred) 
print(score) 

 

train_accuracy = model.score(x_train, y_train) 

test_accuracy = model.score(x_test, y_test) 



print('Training Accuracy : ', train_accuracy) 

print('Testing Accuracy : ', test_accuracy) 

 
0.9733220530174845 

Training Accuracy :  0.9999012930609021 

Testing Accuracy :  0.9733220530174845 

 

cm = confusion_matrix(y_test, y_pred) 

sns.heatmap(cm, annot = True, fmt = 'd') 

plt.xlabel('Predicted', fontsize = 20) 

plt.ylabel('Actual', fontsize = 20) 

plt.title('Accuracy Score = {0}'.format(score), fontsize = 20) 

plt.show() 

 

 
 
print(classification_report(y_test, y_pred)) 

 

              precision    recall  f1-score   support 

 

           0       0.98      0.98      0.98     11604 

           1       0.96      0.96      0.96      6126 

 

    accuracy                           0.97     17730 

   macro avg       0.97      0.97      0.97     17730 

weighted avg       0.97      0.97      0.97     17730 

 

Random Forest with K-fold cross validation: 
 

scores = cross_val_score(model, x_train, y_train, scoring = 'accuracy', cv 

= 10) 

print(scores) 

print('Mean Accuracy : ', scores.mean()) 
 

[0.97010716 0.96827411 0.9750423  0.97278624 0.96672307 0.96813311 

 0.97024817 0.970385   0.97024397 0.96953885] 



Mean Accuracy :  0.9701481975157694 

 

4.1.4. Support Vector Machine: 
 

model = svm.SVC(kernel = 'linear') 

model.fit(X_train, y_train) 

y_pred = model.predict(X_test) 

score = metrics.accuracy_score(y_test, y_pred) 

print('Accuracy', score) 
 

train_accuracy = model.score(X_train, y_train) 

test_accuracy = model.score(X_test, y_test) 

print('Training Accuracy : ', train_accuracy) 

print('Testing Accuracy : ', test_accuracy) 

 
Accuracy 0.9367738296672307 

Training Accuracy :  0.9321037268920005 

Testing Accuracy :  0.9367738296672307 

 

cf = confusion_matrix(y_test, y_pred) 
sns.heatmap(cm, annot = True, fmt = 'd') 

plt.xlabel('Predicted', fontsize = 20) 

plt.ylabel('Actual', fontsize = 20) 

plt.title('Accuracy = {0}'.format(score), fontsize = 20) 

plt.show() 

 

 
 

print(classification_report(y_test, y_pred)) 

 
              precision    recall  f1-score   support 

 

           0       0.96      0.95      0.95     11604 

           1       0.90      0.92      0.91      6126 

 

    accuracy                           0.94     17730 
   macro avg       0.93      0.93      0.93     17730 



weighted avg       0.94      0.94      0.94     17730 

 

SVM with K-fold cross validation: 
 

scores = cross_val_score(model, x_train, y_train, scoring = 'accuracy', cv 

= 10) 

print(scores) 

print('Mean Accuracy : ', scores.mean()) 

 
 

 

4.1.5. Naive Bayes: 
 

model = BernoulliNB() 
model.fit(x_train, y_train) 

y_pred = model.predict(x_test) 

score = metrics.accuracy_score(y_test, y_pred) 

print('Accuracy = ', score) 

 

Accuracy =  0.8638465877044558 

 

cm = confusion_matrix(y_test, y_pred) 

sns.heatmap(cm, annot = True, fmt = 'd') 

plt.xlabel('predicted', fontsize = 20) 

plt.ylabel('Actual', fontsize = 20) 

plt.title('Accuracy = {0}'.format(score), fontsize = 20) 

plt.show() 

 

 
 
print(classification_report(y_test, y_pred)) 

 

   precision  recall  f1-score  support 

0    0.96   0.95   0.95   11604 

1    0.90   0.92   0.91   6126 



accuracy       0.94   17730 

macro avg  0.93   0.93   0.93   17730 

weighted avg  0.94   0.94   0.94   17730 
 

Naive Bayes with K-fold cross validation: 
 

scores = cross_val_score(model, x_train, y_train, scoring = 'accuracy', cv 

= 10) 

print(scores) 
print('Mean Accuracy : ', scores.mean()) 

 

[0.88000564 0.87746757 0.87760857 0.88719684 0.88141568 0.87648054 

 0.88353074 0.87787336 0.87491186 0.87815541] 

Mean Accuracy :  0.8794646212722641 

 
 

 

 

4.1.6. Logistic Regression: 
 

model = LogisticRegression() 

model.fit(x_train, y_train) 

y_pred = model.predict(x_test) 

score = metrics.accuracy_score(y_test, y_pred) 

print('Accuracy', score) 

 

Accuracy 0.8902425267907501 

 

cm = confusion_matrix(y_test, y_pred) 

sns.heatmap(cm, annot = True, fmt = 'd') 

plt.xlabel('predicted', fontsize = 20) 
plt.ylabel('Actual', fontsize = 20) 

plt.title('Accuracy = {0}'.format(score), fontsize = 20) 

plt.show() 

 

 

 



 

 

print(classification_report(y_test, y_pred)) 
 

      precision    recall  f1-score   support 

 

           0       0.89      0.95      0.92     11604 

           1       0.89      0.77      0.83      6126 

 

    accuracy                           0.89     17730 

   macro avg       0.89      0.86      0.87     17730 

weighted avg       0.89      0.89      0.89     17730 

 

Logistic Regression with K-Fold Cross Validation: 
 
[0.9034123  0.87972363 0.9141286  0.91511562 0.88028765 0.91328257 

 0.88874788 0.9148216  0.90833451 0.90706529] 

Mean Accuracy :  0.9024919658968896 

 

 

4.1.7. Using Artificial Neural Network: 
 

model = Sequential() 

 

model.add(Dense(98, activation = 'relu', input_shape = (98,))) 

 

model.add(Dense(45, activation = 'relu')) 

model.add(Dropout(0.2)) 

 

model.add(Dense(4, activation = 'relu')) 

model.add(Dropout(0.15)) 

 
model.add(Dense(1, activation = 'sigmoid')) 

 

model.summary() 

 

Model: "sequential" 
_________________________________________________________________ 

 Layer (type)                Output Shape              Param #    

================================================================= 

 dense (Dense)               (None, 98)                9702       

                                                                  

 dense_1 (Dense)             (None, 45)                4455       

                                                                  

 dropout (Dropout)           (None, 45)                0          

                                                                  

 dense_2 (Dense)             (None, 4)                 184        

                                                                  

 dropout_1 (Dropout)         (None, 4)                 0          



                                                                  

 dense_3 (Dense)             (None, 1)                 5          

                                                                  
================================================================= 

Total params: 14,346 

Trainable params: 14,346 

Non-trainable params: 0 

 

model.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = 

['accuracy']) 

 

history = model.fit(X_train, y_train, 

          batch_size = 64, 

          epochs = 28, 

          verbose = 1, 

          validation_data = (X_test, y_test)) 

 

Epoch 1/28 

1109/1109 [==============================] - 4s 3ms/step - loss: 0.2451 - 

accuracy: 0.9197 - val_loss: 0.1420 - val_accuracy: 0.9447 

Epoch 2/28 

1109/1109 [==============================] - 2s 2ms/step - loss: 0.1788 - 

accuracy: 0.9411 - val_loss: 0.1265 - val_accuracy: 0.9542 

Epoch 3/28 

1109/1109 [==============================] - 2s 2ms/step - loss: 0.1583 - 

accuracy: 0.9460 - val_loss: 0.1222 - val_accuracy: 0.9554 

Epoch 4/28 
1109/1109 [==============================] - 3s 2ms/step - loss: 0.1490 - 

accuracy: 0.9472 - val_loss: 0.1214 - val_accuracy: 0.9549 

Epoch 5/28 

1109/1109 [==============================] - 2s 2ms/step - loss: 0.1423 - 

accuracy: 0.9491 - val_loss: 0.1217 - val_accuracy: 0.9569 

Epoch 6/28 
1109/1109 [==============================] - 2s 2ms/step - loss: 0.1373 - 

accuracy: 0.9507 - val_loss: 0.1130 - val_accuracy: 0.9586 

Epoch 7/28 

1109/1109 [==============================] - 2s 2ms/step - loss: 0.1328 - 

accuracy: 0.9511 - val_loss: 0.1153 - val_accuracy: 0.9567 

Epoch 8/28 

1109/1109 [==============================] - 2s 2ms/step - loss: 0.1307 - 

accuracy: 0.9523 - val_loss: 0.1154 - val_accuracy: 0.9592 

Epoch 9/28 

1109/1109 [==============================] - 2s 2ms/step - loss: 0.1284 - 

accuracy: 0.9539 - val_loss: 0.1132 - val_accuracy: 0.9594 

Epoch 10/28 
1109/1109 [==============================] - 4s 4ms/step - loss: 0.1279 - 

accuracy: 0.9532 - val_loss: 0.1168 - val_accuracy: 0.9601 

Epoch 11/28 

1109/1109 [==============================] - 3s 3ms/step - loss: 0.1241 - 

accuracy: 0.9550 - val_loss: 0.1089 - val_accuracy: 0.9599 



Epoch 12/28 

1109/1109 [==============================] - 2s 2ms/step - loss: 0.1225 - 

accuracy: 0.9549 - val_loss: 0.1078 - val_accuracy: 0.9605 
Epoch 13/28 

1109/1109 [==============================] - 2s 2ms/step - loss: 0.1221 - 

accuracy: 0.9549 - val_loss: 0.1090 - val_accuracy: 0.9617 

Epoch 14/28 

1109/1109 [==============================] - 2s 2ms/step - loss: 0.1198 - 

accuracy: 0.9565 - val_loss: 0.1068 - val_accuracy: 0.9617 

Epoch 15/28 

1109/1109 [==============================] - 2s 2ms/step - loss: 0.1180 - 

accuracy: 0.9570 - val_loss: 0.1107 - val_accuracy: 0.9629 

Epoch 16/28 

1109/1109 [==============================] - 2s 2ms/step - loss: 0.1171 - 

accuracy: 0.9572 - val_loss: 0.1092 - val_accuracy: 0.9606 

Epoch 17/28 

1109/1109 [==============================] - 2s 2ms/step - loss: 0.1153 - 

accuracy: 0.9575 - val_loss: 0.1087 - val_accuracy: 0.9622 

Epoch 18/28 

1109/1109 [==============================] - 2s 2ms/step - loss: 0.1132 - 

accuracy: 0.9595 - val_loss: 0.1085 - val_accuracy: 0.9621 

Epoch 19/28 

1109/1109 [==============================] - 2s 2ms/step - loss: 0.1132 - 

accuracy: 0.9591 - val_loss: 0.1097 - val_accuracy: 0.9633 

Epoch 20/28 

1109/1109 [==============================] - 2s 2ms/step - loss: 0.1107 - 

accuracy: 0.9600 - val_loss: 0.1122 - val_accuracy: 0.9627 
Epoch 21/28 

1109/1109 [==============================] - 2s 2ms/step - loss: 0.1107 - 

accuracy: 0.9602 - val_loss: 0.1092 - val_accuracy: 0.9622 

Epoch 22/28 

1109/1109 [==============================] - 2s 2ms/step - loss: 0.1078 - 

accuracy: 0.9600 - val_loss: 0.1072 - val_accuracy: 0.9631 
Epoch 23/28 

1109/1109 [==============================] - 3s 2ms/step - loss: 0.1088 - 

accuracy: 0.9606 - val_loss: 0.1102 - val_accuracy: 0.9623 

Epoch 24/28 

1109/1109 [==============================] - 2s 2ms/step - loss: 0.1079 - 

accuracy: 0.9605 - val_loss: 0.1111 - val_accuracy: 0.9640 

Epoch 25/28 

1109/1109 [==============================] - 2s 2ms/step - loss: 0.1078 - 

accuracy: 0.9603 - val_loss: 0.1123 - val_accuracy: 0.9636 

Epoch 26/28 

1109/1109 [==============================] - 2s 2ms/step - loss: 0.1069 - 

accuracy: 0.9613 - val_loss: 0.1089 - val_accuracy: 0.9623 
Epoch 27/28 

1109/1109 [==============================] - 2s 2ms/step - loss: 0.1054 - 

accuracy: 0.9619 - val_loss: 0.1104 - val_accuracy: 0.9640 

Epoch 28/28 



1109/1109 [==============================] - 2s 2ms/step - loss: 0.1040 - 

accuracy: 0.9624 - val_loss: 0.1103 - val_accuracy: 0.9633 

 
plt.plot(history.history['accuracy']) 

plt.plot(history.history['val_accuracy']) 

plt.title('Model Accuracy') 

plt.ylabel = 'Accuracy' 

plt.xlabel = 'epochs' 

plt.legend(['Train', 'Test'], loc = 'upper left') 

plt.show() 

 

 
 

plt.plot(history.history['loss']) 

plt.plot(history.history['val_loss']) 

plt.title('Model Loss') 

plt.ylabel = 'Loss' 

plt.xlabel = 'Epochs' 

plt.legend(['Train', 'test'], loc = 'upper left') 

plt.show() 

 

 
 

score = model.evaluate(X_test, y_test, verbose = 0) 

print('Test Score : ',score[0]) 
print('Test Accuracy : ', score[1]) 



 

Test Score :  0.11026214063167572 

Test Accuracy :  0.9633389711380005 
 

 

y_pred = model.predict(X_test) 

 

print(classification_report(y_test, y_pred.round())) 

 

   precision    recall  f1-score   support 

 

           0       0.97      0.98      0.97     11604 

           1       0.96      0.94      0.95      6126 

 

    accuracy                           0.96     17730 

   macro avg       0.96      0.96      0.96     17730 

weighted avg       0.96      0.96      0.96     17730 

 

cm = confusion_matrix(y_test, y_pred.round()) 

heatmap = sns.heatmap(cm, annot = True, fmt = "d") 

plt.title('Accuracy Score {0}'.format(score[1]), fontsize = 20) 

plt.show() 

 
 

5. Result and comparison:  
Table-1 is a comparison table that contains Precision, Recall, F1-Score, Support, 

Accuracy & K-fold cross validation accuracy values of different developed models. 

 

Model Label Precision Recall F1-
Score 

Support Accuracy k-Fold 
cross-
validation 
accuracy 

KNN 0 
1 

0.96 
0.93 

0.96 
0.93 

0.96 
0.93 

11604 
6126 

0.95 0.9536 

Decision 
Tree 

0 
1 

0.97 
0.94 

0.97 
0.94 

0.97 
0.94 

11604 
6126 

0.96 0.9537 



Random 
Forest 

0 
1 

0.98 
0.96 

0.98 
0.96 

0.98 
0.96 

11604 
6126 

0.97 0.9701 

Support 
Vector 
Machine 

0 
1 

0.96 
0.90 

0.95 
0.92 

0.95 
0.91 

11604 
6126 

0.94 NA 

Naïve 
Bayes 

0 
1 

0.93 
0.80 

0.88 
0.87 

0.91 
0.83 

11604 
6126 

0.86 0.8794 

Logistic 
Regression 

0 
1 

0.89 
0.89 

0.95 
0.77 

0.92 
0.83 

11604 
6126 

0.89 0.9024 

ANN 0 
1 

0.97 
0.96 

0.98 
0.94 

0.97 
0.95 

11604 
6126 

0.96 NA 

Table 1 

 

Initially our dataset had around 88646 rows and 112 columns. After pre-processing 

our dataset reduces to 88646 rows and 99 columns. Out of the total processed 

dataset 80%(70916) was considered for training purpose and 20%(17730) was 

considered for testing purpose. After training each model was validated with the test 

data and from the result, we calculate the confusion matrix. Furthermore, from the 

confusion matrix we calculate Precision, Recall, F1 Score and Accuracy to evaluate 

the models. 

Confusion Matrix: 

A confusion matrix is a technique for summarizing the performance of a classification 

algorithm. Calculating confusion matrix can give us a better idea of what our 

classification model is getting right and what types of error it is making.  

 

The confusion matrix represents 
the correctly classified True 
Positive (TP) values, False Positive 
(FP)  values, True Negative (TN) 
values and False Negative values. 
 

 
       Picture Courtesy: Glassdoor images  

 



 

Precision: Precision measures how many of the 
positive predictions are correct. Precision should 
ideally be 1 for a good classifier. Precision 
becomes 1 only when the numerator and 
denominator are equal.   
Recall: Recall is a measure of how many positive 
cases the classifier correctly predicted, over all 
positive cases in the data. It sometimes also 
referred to as sensitivity. 
F1-Score: F1-score is a measure combining both 
precision and recall. It is generally described as 
the harmonic mean of the two. Harmonic mean is 
just another way to calculate an average. 
Accuracy: The base metric used for model 
evaluation is often accuracy. Describing the 
number of correct predictions over all 
predictions. 
 

 

From table1 we can see that the Random Forest classifier is the best performing 

model with Precision = 0.98, Recall = 0.98, F1-score = 0.98, and Accuracy = .97. The 

Artificial Neural Network is the second best model with Precision = 0.97, Recall = 

0.97, F1-score = 0.98 and Accuracy = 0.96. 

 

6. Discussion:  
In the experiments we have seen that the random forest classifier gives us the most 

accurate results. The second-best performing model is the ANN. We were trying to 

evaluate the models with a range of hyper parameters, but we did not get any result 

as the execution was very time consuming.  
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PROBLEM DESCRIPTION 

 
Steganalysis has now become an important topic in the field of information security where media files 

undergo frequent alteration, to hide the existence of a message from a third party. Knowledge of 

steganography is of increasing importance to individuals in the law enforcement, intelligence and 

military. Steganalysis is the study of analysing images in order to discover methods of detecting hidden 

messages and data within the media files, or to ensure a file has undergone steganography or not. 

Since image files have been more prone to steganography for decades for ease of access, storage, 

communicate, share and decipher; scientists and researchers are always into finding a more trustful 

blind image steganalysis approach which can fit and detect almost all possible image steganography 

approaches on target images. The goal in this paper has been divided into two parts: 

In part 1 we try to find an ideal steganalysis approach to detect the presence of steganography 

in a grayscale image file which has undergone a LSB steganography. LSB or Least Significant Bit 

steganography hides messages inside an image by replacing the least significant bits of an image with 

the bits of the message to be hidden. Through our method we have tried to train a neural network 

classifier with the fundamental characteristics (features include Haralick [1] Texture features and 

Principal Component Analysis [2] features which were calculated from Gray-level Co-occurrence 

Matrix of the image) of some cover images and that of LSB steganographed images, and finally classify 

an test image as cover or stego.  

In part 2 we try to improve our method by expanding our domain to a broader aspect and try 

to detect steganography in images irrespective of the embedding algorithm used with the help of 

Convolutional Neural Networks. For better training of the network we have made use of powerful 

steganographic algorithms like WOW, S-UNIWARD, HUGO in preparation of dataset. By this approach 

we do not need to extract features of images by Haralick or Principal Component Analysis but the CNN 

will learn by itself through huge training datasets. 

Throughout our approach we have tried to keep the method robust, dedicated to work 

irrespective of standard or non-standard datasets and tried to maintain a decent accuracy percentage 

of detection between cover and stego-images so that it copes up with other present image 

steganalysis methods in industry. 

 
 

 

 

 

 

 



CHAPTER 1: A DEEP LEARNING BASED BLIND IMAGE STEGANALYSIS 

TECHNIQUE USING PCA AND HARALICK FEATURES FROM GRAY 

LEVEL CO-OCCURRENCE MATRIX 

 

CHAPTER 1.1: INTRODUCTION 

 

1.1.1 STEGANOGRAPHY 

Steganography is the practice of concealing a message within another message or a physical object. 
In computing/electronic contexts, a computer file, message, image, or video is concealed within 
another file, message, image, or video so that it is not visible to unauthorized users. The 
word steganography comes from Greek steganographia, which combines the words steganós, 
meaning "covered or concealed", and -graphia meaning "writing". 

The first recorded use of the term was in 1499 by Johannes Trithemius in his Steganographia, a 
treatise on cryptography and steganography, disguised as a book on magic. Generally, the hidden 
messages appear to be (or to be part of) something else: images, articles, shopping lists, or some other 
cover text. For example, the hidden message may be in invisible ink between the visible lines of a 
private letter. Some implementations of steganography that lack a shared secret are forms of security 
through obscurity, and key-dependent steganographic schemes adhere to Kerckhoffs's [3] principle.  

The advantage of steganography over cryptography alone is that the intended secret message does 
not attract attention to itself as an object of scrutiny. Plainly visible encrypted messages, no matter 
how unbreakable they are, arouse interest and may in themselves be incriminating in countries in 
which encryption is illegal.  

Whereas cryptography is the practice of protecting the contents of a message alone, steganography 
is concerned with concealing the fact that a secret message is being sent and its contents. 

A Steganography system made up of three components: cover-object means which hides the secret 
message, the secret message and the stegoobject means which is the cover object with message 
embedded inside it.Steganography includes the concealment of information within computer files. In 
digital steganography, electronic communications may include steganographic coding inside of a 
transport layer, such as a document file, image file, program, or protocol. Media files are ideal for 
steganographic transmission because of their large size. For example, a sender might start with an 
innocuous image file and adjust the color of every hundredth pixel to correspond to a letter in the 
alphabet. The change is so subtle that someone who is not specifically looking for it is unlikely to notice 
the change. 

1.1.1.1 Steganography in Digital Mediums [4] 

There are many Steganography techniques depending on the type of the cover object which are 
followed in order to obtain the security.  

a.Text Steganography: The techniques in text steganography are number of tabs, white spaces, capital 
letters, just like Morse code is used to achieve information hiding.  

b. Image Steganography: Taking the cover object as image in steganography is called image 
steganography. In this technique pixel intensities are used to hide the information. The 8 bit and 24 
bit images are common. The image size is large then hides the more information. Larger images may 
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require compression to avoid detection and the Techniques are LSB insertion and Masking and 
filtering. 

c. Network Steganography: Taking cover objects as network protocol i.e. TCP, UDP, IP etc, where 
protocol is used as carrier is called network protocol steganography. In the OSI model there exist the 
channels where steganography can be achieved in unused header bits of TCP/IP fields  

d. Audio Steganography: Taking audio as carrier for information hiding is called audio steganography. 
It is very important medium due to voice over IP (VOIP) popularity. It is used for digital audio formats 
such as WAVE, MIDI, and AVI MPEG for steganography. The methods are LSB coding, echo hiding, 
parity coding etc.  

e. Video Steganography: It is a technique to hide any type of files or information into digital video 
format. Video i.e. the combination of pictures is used as carrier for hidden information. The discrete 
cosine transform i.e. DCT change the values e.g., 8.667 to 9 which is used to hide the information in 
each of the images in the video, which is not justified by the human eye. It is used such as H.264, Mp4, 
MPEG, AVI or other video formats. 

1.1.1.2 Techniques of Steganography  

a. Spatial Domain Methods: spatial domain Steganography technique refers to methods in which data 
hiding is performed directly on the pixel value of cover image in such a way that the effect of message 
is not visible on the cover image. The spatial domain methods are classified as following:  

1. LSB: LSB is one the technique of spatial domain methods. LSB is the simple but susceptible to lossy 
compression and image manipulations. Some bits are change directly in the image pixel values in 
hiding the data. Changes in the value of the LSB are imperceptible for human eyes. LSB technique 
there is less chance for degradation of the original image, more information can be stored in an image 
and covert communication of sensitive data. 

2. Pixel Value Differencing: To embedding the data in PVD the two consecutive pixels are selected. 
Whether the pixels are determined from smooth area or an edge area. Payload is determined by 
calculating the difference between two regular pixels.  

3. BPC: The Binary Pattern complexity approach is used to measure the noise factor in the image 
complexity. The noisy portion is replaced by binary Pattern and it is mapped from the secret data. The 
image will remain same when the reverse noise factor will be determined.  

b. Transform Domain Steganography: It is a more complex way to hides the information in an image. 
The different algorithms and transformations are used to hide information in the images. In the 
frequency domain, the process of embedding data of a signal is much stronger than embedding 
principles that operate in the time domain. The transform domain techniques over the MATEC Web 
of Conferences DOI: 10.1051/ 57, 02003 (2016) matec 57 conf/2016 0 ICAET 2016 - 2003 3 spatial 
domain techniques are to hide the information in the images that are less exposed to compression, 
image processing and cropping. Some transform domain techniques are not depending on the image 
format and they run the lossless and lossy format conversions. Transform domain techniques are 
classified into various categories such as Discrete Fourier transformation (DFT), discrete cosine 
transformation (DCT), Discrete Wavelet transformation (DWT)  

1. The Discrete Fourier Transform (DFT): Discrete Fourier transform is the transform that are purely 
discrete: discrete-time signals are converted into discrete number of frequencies. DFT converts a finite 
list of equally spaced samples of a function into the list of coefficients of a finite combination of 
complex sinusoids ordered by their frequencies. It can be said to convert the sampled function from 
its original domain often time or position along a line to the frequency domain. The Discrete Time 
Fourier transforms uses the discrete time but it converts into the continuous frequency. The algorithm 
for computing the DFT is very fast on modern computers. This algorithm is known as Fast Fourier 



Transform i.e. FFT and it produces the same result as of the DFT by using the Inverse Discrete Fourier 
Transform.  

2. The Discrete Cosine Transform (DCT): This method is similar to the Discrete Fourier Transform. DCT 
transform the signal or image from spatial domain to the frequency domain. The mathematical 
transforms convert the pixels in such a way as to give the effect of “spreading” the location of the 
pixel values over part of the image. The DCT is used in steganography as the Image is broken into 8×8 
pixel blocks and transforms these pixel blocks into 64 DCT. Working from left to right, up to down, the 
DCT is applied to each block. Through quantization table each block is compressed to scale the DCT 
coefficients and message is embedded in DCT coefficients. The array of compressed blocks that 
constitute the image is stored in drastically reduced the amount of space. When desired, image is 
reconstructed through decompression, a process that uses the Inverse discrete cosine transform i.e. 
IDCT.  

3. Discrete Wavelet Transform (DWT): It is used to transform the image from a spatial domain to the 
frequency domain. In the process of steganography DWT identifies the high frequency and low 
frequency information of each pixel of the image. It is mathematical tool for decomposing an image 
hierarchically. It is mainly used for processing of non-stationary signals. The wavelet transform is based 
on small waves, Known as wavelets, of different frequency and limited duration. It provides both 
frequency and spatial description of the image. Wavelets are created by translations and dilations of 
a fixed function are known as mother wavelet. DWT performs in one dimension and in the two-
dimensional plane. The DWT is the accurate model than the DFT or the DCT and it is multi resolution 
description of the image. The current image compression standard JPEG 2000 is based on the wavelet 
transforms.  

c. Vector Embedding: A vector embedding method that uses robust algorithm with codec standard 
(MPEG-1 and MPEG -2).This method embeds audio information to pixels of frames in host video. It is 
based on the H.264/AVC Video coding standard. The algorithm designed a motion vector component 
feature to control embedding, and also to be the secret carrier. The information embedded will not 
significantly affect the video sequence's visual invisibility and statistical invisibility. The algorithm has 
a large embedding capacity with high carrier utilization, and can be implementing fast and effectively.  

d. Spread spectrum: The concept of spread spectrum is used in this technique. In this method the 
secret data is spread over a wide frequency bandwidth. The ratio of signal to noise in every frequency 
band must be so small that it becomes difficult to detect the presence of data. Even if parts of data 
are removed from several bands, there would be still enough information is present in other bands to 
recover the data. Thus it is difficult to remove the data completely without entirely destroying the 
cover.It is a very robust approach used in military communication.  

e. Statistical Technique: In the technique message is embedded by changing several properties of the 
cover. It involves the splitting of cover into blocks and then embedding one message bit in each block. 
The cover block is modified only when the size of message bit is one otherwise no modification is 
required.  

f. Distortion Techniques: The distortion method is used to store the secret data by distorting the signal. 
An encoder applies a sequence of modifications to the cover image and the decoder phase decodes 
the encrypted data MATEC Web of Conferences DOI: 10.1051/ 57, 02003 (2016) matec 57 conf/2016 
0 ICAET 2016 - 2003 4 to the original data with the secret data by using some secret key.  

g. Masking and Filtering: This approach is used to hides the data by marking an image. This approach 
is valuable where watermarks become a portion of the image. The data will be embedded where the 
more significant part of the image rather than hiding it into the noisy portion. The watermarking 
techniques are more integrated into the image and it can be applied without the fear of destruction 
of the image. This technique is used in 24 bit and grey scale images. 

 



1.1.1.3 Factors Include in Steganography  

The effectiveness of steganography technique can be determined by comparing cover-image with the 

stego Image. The various factors are:  

a. Robustness: Robustness refers to the ability of embedded data to remain intact if the stego- image 

undergoes transformations, such as linear and non-linear filtering, sharpening or blurring, addition of 

random noise, rotations and scaling, cropping or decimation, lossy compression.  

b. Imperceptibility: The imperceptibility means invisibility of a steganography algorithm. Because it is 

the first and foremost requirement, since the strength of steganography lies in its ability to be 

unnoticed by the human eye.  

c. Bit Error Rate: The hidden information can be successfully recovered from the communication 

channel. It must be ideal but for the real communication channel, the error comes while retrieving 

hidden information and this is measured by BER. It is the ratio of the number of errors to the total no 

of bits sent in an image.  

d. Mean Square Error: It is computed by performing byte by byte comparisons of the two images. The 

representation of pixel with 8 bits and the representation of grey level images upto 256 levels. The 

distortion in the image can be measured using MSE. Let I be the cover image, K be the stego image 

and m*n be the total number of pixels.  

e. Peak Signal to Noise Ratio: The image steganography system must embed the content of hidden 

information in the image so that the quality of the image should not change. PSNR is commonly used 

to measure the quality of reconstruction of lossy compression techniques Larger the PSNR value 

indicates the better quality of image i.e. less distortion. PSNR is the ratio of the maximum signal to 

noise in the stego image. 

 

1.1.2 STEGANALYSIS 

Steganalysis is the study of detecting messages hidden using steganography; this is analogous 
to cryptanalysis applied to cryptography. The goal of steganalysis is to identify suspected packages, 
determine whether or not they have a payload encoded into them, and, if possible, recover that 
payload. 

Unlike cryptanalysis, in which intercepted data contains a message (though that message 
is encrypted), steganalysis generally starts with a pile of suspect data files, but little information about 
which of the files, if any, contain a payload. This process can be categorized by different types such as 
Statistical steganalysis which contains spatial domain. Transform domain and Feature based 
steganalysis. The Statistical steganalysis helps to detect the existence of the hidden message, 
statistical analysis is done with the pixels and it is further classified as spatial domain steganalysis and 
transforms domain steganalysis. In spatial domain, the pair of pixels is considered and the difference 
between them is calculated. The pair may be any two neighbouring pixels. They may be selected within 
a block otherwise across the two blocks. Finally, the histogram is plotted that shows the existence of 
the hidden message. In transform domain, frequency counts of co-efficients are calculated and then 
histogram analysis will be performed at the time of steganalysis. With the help of this, the cover and 
stego images can be differentiated. However, this method is not providing information about the 
embedding algorithms. To overcome this problem, we may choose feature based steganalysis. In the 



Feature based steganalysis approach, the features of the given image will be obtained for selecting 
and retaining relevant information from the cover image. These extracted features are used to detect 
hidden message in an image. They can also be used to train classifiers. 

1.1.2.1 Classification of Steganalysis [5]  

There are certain types of algorithms available in the literature to perform classification; the 
classification is a supervised process where it needs a prior training to classify the data into normal or 
stego data. The steganalysis algorithm may or may not depend on the steganographic algorithm (SA). 
Based on this, steganalysis is classified as Specific and generic algorithms. Few algorithms depend on 
the steganographic algorithms and few not.  

a. Specific / Target steganalysis: The SA is known and the designing of detector (steganalysis algorithm) 
is based on SA. The steganalysis algorithm is dependent on the SA. This type of steganalysis is based 
on analyzing the statistical properties of an image that change after embedding. The advantage of 
using specific steganalysis is the results are very accurate. The specific or target steganalysis are very 
limited to particular embedding algorithm. So it is not fully applicable for all types of algorithms. And 
it also not supports all image formats.  

b. Generic / Blind / Universal steganalysis: In universal method, the steganalysis algorithm is not 
recognized by all. Therefore, anyone can design a detector to detect the presence of the secret 
message that will not depend on steganalysis algorithms. Comparing with specific steganalysis, 
universal is common and less efficient. Still universal steganalysis is widely used than specific one 
because it is independent of the SA. This research focuses on universal steganalysis. It includes the 
following 2 phases like feature extraction from the data and classifying them into two distinct groups.  

1. Feature Extraction: It is a process of creating a set of distinct statistical attributes of an image. These 
attributes are known as feature. Feature Extraction is nothing but a dimensionality reduction. The 
extracted features must be sensitive to the embedding objects and the Image quality metrics and also 
wavelet decompositions, moment of image statistic histograms, Markov empirical transition matrix, 
moment of image statistic from spatial and frequency domain, cooccurrence matrix are some of the 
feature extraction methods.  

2. Classification: It is a way of categorizing the images into classes depending on their feature values. 
Supervised learning is one of the primary classifications in steganalysis. Supervised learning allows 
learning under some supervision. In this learning, a set of training inputs that includes input features 
is given as input to train the classifier. After the training, class label is predicted based on the features 
that are given. Steganalysis use the following classifiers:  

a. Multivariate regression: It consists of regression co-efficient. In the training phase, regression 
coefficients are predicted using minimum mean square error. This algorithm is effective when the 
training samples are valid and huge.  

b. Fisher linear discriminant (FLD): It is a linear combination of features which maximizes the 
separations. In the classification method, multi dimensional features are projected into a linear space. 
Using this algorithm, the feature extraction and matching will be performed effectively, because it 
uses the linear method at the time of feature extraction and content extraction.  

c. Support Vector Machine (SVM): Support Vector Machine is a popular supervised learning process 
algorithm, which learns from the given sample i.e. training dataset. This algorithm is trained to 
recognize and assign class labels based on a given set of features and objects. In general, SVM creates 
a hyper plane selection problem and may arise outliers.  

d. Artificial neural network (ANN): It is defined as an information processing model that simulates 
biological neuron approaches and it includes several steps to classify the data. Feed forward and back 
propagation neural networks are commonly used in classification. The classification process has 2 
steps, training and testing. In a training phase, the neural network associates the outputs with the 



given input patterns, by modifying the weights of inputs. In a testing phase, the input pattern is 
identified and the associated output is determined. This thesis uses ANN classifier for detecting the 
presence of hidden information.  

1.1.2.2 Steganalysis tools  

Steganalysis usually consist several processes like cropping, blurring, image resizing, noise removal 
and compression process. Various steganalysis tools are available to detect the presence of hidden 
information with the stego image. And few tools only provide the above process. Some of the 
steganalysis tools are mentioned below: 

a. StegDetect: This software is an automated tool for detecting steganographic content in images. It 
is capable of detecting several different steganographic methods to embed hidden information in JPEG 
images. This software will run on the linux platform. Currently, the detectable schemes are jsteg, 
jphide, invisible secrets; OutGuess 01.3b, F5, appendX, and camouflage. Using linear discriminant 
analysis, it also supports detection of new stego systems. The main drawback of this software is it 
works only for JPEG images. Currently, there is no support for parameter training. The only exported 
knob is the sensitivity level. Future versions will export all detection parameters via a configuration 
file.  

b. JPSeek: It is a program that allows detecting the hidden massage inside a jpeg image. There are 
various versions of similar programs available on the internet but JPSeek is rather special. The design 
objective is same as JPHide.  

c. StegSecret: StegSecret software aim is to gather, to implement and to make easier the usage of 
steganalysis techniques, especially in digital media such as images, audio and video. This software 
warns about the insecurity of several steganographic tools and steganographic algorithms available in 
Internet. It is a steganalysis open source project that makes possible the detection of hidden 
information in different digital media. StegSecret is java-based multiplatform steganalysis tool that 
allows the detection of hidden information by using the most known steganographic methods. It 
detects EOF, LSB, and DCT like techniques.  

d. StegBreak: It launches brute-force dictionary attacks on JPG image. The StegBreak states a brute-
force dictionary attack against the specified JPG images. And while comparing with the other tools, 
this is effectively work on JPG image formats.  

e. Other steganalysis tools: Some more image steganalysis tools are 2Mosaic, StirMark Benchmark, 
Phototile, StegSpy, Stego Suite, Steganalysis Analyzer Real-Time Scanner, JSteg detection, JPHide 
detection, OutGuess detection. 

1.1.2.3 Applications of Steganalysis  

a. Medical safety: Current image formats such as Digital Imaging and Communications in Medicine 
separate image data from the text like such as patients name, date and physician details along with 
the result that the link between image and patient occasionally gets mangled by protocol converters. 
Thus embedding the patient's name in the image could be a useful safety measure [5].  

b. Terrorism: According to government officials terrorists use to hide maps and photographs of 
terrorist targets and giving instructions for terrorist targets.  

c. Hacking: The hacker hides a monitoring tool, server behind any image or audio or text file and shares 
it with mail or chat which will get installed and executed which will help the hacker to do anything 
with the workstation. 

 

 

 



1.1.3 CO-OCCURRENCE MATRIX 

A co-occurrence matrix or co-occurrence distribution (also referred to as : gray-level co-occurrence 
matrices GLCMs) is a matrix that is defined over an image to be the distribution of co-occurring pixel 
values (grayscale values, or colors) at a given offset. It is used as an approach to texture analysis with 
various applications especially in medical image analysis. Co-occurrence matrices are also referred to 
as GLCMs (gray-level co-occurrence matrices, GLCHs (gray-level co-occurrence histograms) or spatial 
dependence matrices. 

Haralicket [1] al. originally proposed GLCM as a texture analysis method in 1979 for satellite image 

analysis. If M is a gray level image then, co-occurrence matrix C of M, calculates the number of times 

a pixel pair with an offset (∆𝑥, ∆𝑦) occurs in the image. Here ∆𝑥 𝑖𝑠 𝑡ℎ𝑒 difference in vertical pixel 

position and ∆𝑦 =Difference in horizontal pixel positions of the pair .So an offset of (0,1) means two 

horizontally adjacent pixel pair whereas offset=(1,0) means two vertically adjacent pixel pair. If the 

number of gray levels in the image M is G, then the size of C is G x G. So for an 8 bit grayscale image 

the GLCM has size 256x256. If the image size is 𝑚𝑥𝑛 then, for a pair of intensity levels (i,j), GLCM of M 

at offset (∆𝑥, ∆𝑦) is defined as, 

𝐶∆𝑥,∆𝑦(𝑖, 𝑗) = ∑ ∑ {
1  𝑖𝑓 𝑀(𝑥, 𝑦) = 𝑖 𝑎𝑛𝑑 𝑀(𝑥 + ∆𝑥, 𝑦 + ∆𝑦) = 𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
𝑛
𝑦=1

𝑚
𝑥=1  (1) 

Offset (∆𝑥, ∆𝑦) can also be represented in terms of(𝑑, 𝜃) where d= relative distance (number of pixels) 

between pixel pairs and 𝜃 = Relative angle (e.g. 0, 45, 90, 135 etc.) between them. For example a 

grayscale 2-bit image with intensity values {0,1,2,3} has the co-occurrence matrix as depicted in Figure-

1. 

0 0 1 1 

0 0 1 1 

0 2 2 2 

2 2 3 3 

       (a)     (b)                                 (c)                          (d)                           (e) 

Figure 1: a) 2-bit grayscale image b) GLCM for 00 (horizontal) c) GLCM for 900 (vertical)d) GLCM for 

1350 (Right down) (e) GLCM for 450(Left down). These matrices can be used to extract many relevant 

features to design a model for blind steganalysis [9]. 

1.1.3.1 Applications  

1. Whether considering the intensity or grayscale values of the image or various dimensions of color, 

the co-occurrence matrix can measure the texture of the image. Because co-occurrence matrices are 

typically large and sparse, various metrics of the matrix are often taken to get a more useful set of 

features. Features generated using this technique are usually called Haralick features, after Robert 

Haralick. Texture analysis is often concerned with detecting aspects of an image that are rotationally 

invariant. To approximate this, the co-occurrence matrices corresponding to the same relation, but 

rotated at various regular angles (e.g. 0, 45, 90, and 135 degrees), are often calculated and summed. 

Texture measures like the co-occurrence matrix, wavelet transforms, and model fitting have found 

application in medical image analysis in particular.  

2. Co-occurrence matrices are also used for words processing in natural language processing (NLP). 
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1 0 6 1 

0 0 1 2 

https://en.wikipedia.org/wiki/Matrix_(mathematics)
https://en.wikipedia.org/wiki/Digital_image


1.1.4 PRINCIPAL COMPONENT ANALYSIS 

Principal Component Analysis [2] is used as dimensionality reduction technique. It generates 
a set of new reduced variables and retains original information in these variables. Let x1,…xm 
be m vectors in Rd, the dimensionality is reduced using linear transformation. A matrix W ∈ 
Rn,d, where n<d induces a mapping xWx where Wx ∈ Rn is the lower dimensionality 
representation of x. Also a second matrix U ∈ Rd,n is used to recover each original vector x 
from its compressed version. That is, for a compressed vector y = Wx, where y is in the low 
dimensional space Rn, we can construct xT = Uy, so that x is the recovered version of x and 
resides in the original high dimensional space Rd. 
 

In PCA, we find the compression matrix W and the recovering matrix U so that the total 
squared distance between the original and recovered vectors is minimal. 
 
One such method of finding these matrices is SVD(Singular Value Decomposition)[]. Let there 
be n observations in an experiment and each observations have m data points and 
represented in the form a matrix M of order nXm. Matrix product of this M  and MT is 
calculated. The order of the resultant matrix is nXn. Eigen vectors is calculated for the matrix 
MMT. The number of eigen vectors is equal to n. This n eigen vectors each having n elements 
is the PCA matrix where the dimensionality is reduced from m to n. 
 
In the PCA matrix the columns which appear earlier tends to store more information and the 
later columns in the matrix tends to hold less information. 
 
 
1.1.5 HARALICK TEXTURE FEATURES 
 
Haralick [1] texture features are common texture descriptors in image analysis. To compute 
the Haralick features, the image gray-levels are reduced, a process called quantization. The 
resulting features depend heavily on the quantization step, so Haralick features are not 
reproducible unless the same quantization is performed. The aim of this work was to develop 
Haralick features that are invariant to the number of quantization gray-levels. By redefining 
the gray-level co-occurrence matrix (GLCM) as a discretized probability density function, it 
becomes asymptotically invariant to the quantization. The invariant and original features 
were compared using logistic regression classification to separate two classes based on the 
texture features. Classifiers trained on the invariant features showed higher accuracies, and 
had similar performance when training and test images had very different quantizations. In 
conclusion, using the invariant Haralick features, an image pattern will give the same texture 
feature values independent of image quantization.  
 
Calculation of common Haralick features are based on the formulae from : 

Uniformity or energy                      = ∑ 𝑝𝑖,𝑗
2

n

𝑖,𝑗=0
   (1) 

Entropy                                             = ∑ 𝑝i,j ∗ log (𝑝i,j)
𝑛

𝑖,𝑗
  (2) 

Maximum Probability                     = 𝑚𝑎𝑥𝑖,𝑗   𝑝𝑖,𝑗   (3) 



Contrast                                            = ∑ |i − j|l ∗ 𝑝i,j
k

𝑛

𝑖,𝑗
  (4) 

Inverse difference moment           = ∑
𝑝𝑖,𝑗

|i−j|l

𝑛

𝑖,𝑗=0
𝑖≠𝑗

   (5) 

Correlation       =    ∑
(i−u)(j−u)𝑝𝑖,𝑗

σ2

𝑛

𝑖,𝑗
   (6) 

Probability of a run of  length      =
(𝑃𝑖−𝑝𝑖,𝑖)2𝑝𝑖,𝑖

𝑛−1

𝑃𝑖
𝑛 , 𝑤ℎ𝑒𝑟𝑒 𝑃𝑖 = ∑ 𝑝𝑖,𝑗

𝑛

𝑗
   (7) 

n for a  graytone i (Assuming  
the image is Markov) 

 
This calculation gives statistical information for the GLCM.                      

 

 

CHAPTER 1.2: RELATED WORK & MOTIVATION 

 

1.2.1 RELATED WORK   

Kekre, H. B.et al. [6]  proposes a method for detection of LSB steganography using 24bit color images 

using a ratio (R) of close color pair with respect unique color in an image. If repeated LSB embedding 

is applied on an image the change in R is highest for first embedding and reduces for successive LSB 

embedding. If the image is Stego then R=R’ and if the image is cover then R’≥R. A percentage change 

(m) in R is calculated as m=((R-R’)*100)/R. A variable threshold schemes is calculated using Structural 

Similarity Index Measure (SSIM). A threshold (t) is calculated as t=m/SSIM. The threshold (t) is varied 

by (t-1e05t, t-1e06t, t-1e07t, t-1e08t, t-1e09t, t+1e05t, t+1e06t, t+1e07t, t+1e08t, t+1e09t). If m<t 

then image is categorized as stego image otherwise cover image. 180 BMP images of resolution 

128X128 is used.Stego versions of the cover images is taken by 25%,45%,50%,90% LSB payload and 

Stego images are further adulterated by 25% to 50%, 45% to 50%, 50% to 100%, 90% to 100% LSB 

payload. 83% accuracy is reported. 

Athawale A.A. et al [7] proposed a GLCM based LSB steganalysis technique for grayscale and color 

images. Average GLCM for different orientation of {0, 45, 90,135} degree are created. GLCM of clean 

image is diagonally symmetrically concentrated but losses this symmetry after LSB embedding. 31 

different features are generated taking five central diagonals. Features are stored in the database. 

Now for a test image this features are generated and compared using Euclidean and Manhattan 

distance for a match with threshold (100, 150, 200, 250). Experimental results were noted after using 

different embedding concentration (i.e. 25%, 40%, 50%, 90%, 100%) for both grayscale and color 

images.Detection accuracy in case of color images is better than that of grayscale images by around 

18% in Manhattan distance and almost same in Euclidean distance. 

Xia, Z et al. [8]  models the message embedded by LSB matching as the independent noise to the 

image, and theoretically prove that LSB matching smoothens the histogram of multi-order 

differences(MODF) for {0,90} degrees. The first four order differences are calculated and only the 

differences in the range of [4, 4] are considered. Histogram of low order differences can be 



approximated by Laplace distribution. The smoothness caused by LSB matching is especially apparent 

at the peak of the histogram. The GLCM is utilized to model the differences with the small absolute 

value in order to extract features due to the fact that they are more sensitive to the embedded 

message. Support Vector Machine (SVM) is used to classify using these features. Natural Resources 

Conservation Service (NRCS) dataset and BOSS dataset are used with 1.0, 0.5, 0.25, and 0.1 bits per 

pixel (bpp) payload. The detection reliability 𝜌 is 0.5621 with NRCS and 0.8906 for BOSS using for 4-

ODF. 

Anjum A. et al. [9] proposed a series of upgraded neighbor pixel predictor (NPP) methods such as 

4,8,24 and adaptive NPP for edge and boundary pixels to be used in weighted steganography (WS) 

method. Edge pixels are detected using dynamic pixel predictor and NPP of these pixels are taken into 

account. Proposed Ignore boundary (8-NPP) method detection rate is 0.47491 at 0.5 bpp payload 

which is better than WS method rate of 0.37089 when experimented with BOSS database. 

Juarez-Sandoval O. et al. [10] proposed a method in which the input image Ic is embedded using LSB 

matching with 100% payload to generate Stego image Is. Twelve feature vectors of the form Fi=(Ic/Is) 

is created for i=1, 2…12. Fi for i= 3,4,5,6 is derived from the GLCM of the difference between Icand Is. 

F1 and F2 are defined as the ratio of the shape parameter of the Generalized Gaussian Distribution 

(GGD) of the PDF difference of the Ic and Isfor 4 adjacency and 8 adjacency. F7 and F8 are calculated 

from the centre of mass of the histogram characteristics function of difference of adjacent pixels under 

4 adjacency and 8 adjacencies respectively. F9, F10 are calculated by the ratio of the inclination of the 

central part of the PDF for 4 adjacency and 8 adjacency difference of pixel of Ic and Is. The feature F11 

and F12 are calculated exactly as F9 and F10 with a difference that Stego image for this case is again 

exposed a LSB matching steganography with 100% payload. SVM is used with ddifferent payloads of 

100%, 75%, 50% and 25%.The scheme achieved 96.25 % and 90.96% detection accuracy with 100% 

payload for BOWS-2 and UCID dataset respectively. 

Sun Z. et al. [11] proposed a method that computes the forward difference of adjacent pixels in three 

directions horizontal, vertical and diagonal,  to obtain three-directional differential images. Because 

of high correlation between neighboring pixels, the majority of the differential pixels are highly 

concentrated in a small range near zero. They are again thresholded to remove redundancy and to 

reduce GLCM features. SVM is used to examine the spread spectrum (SS), +- LSB and generic LSB 

method with 0.1, 0.2 and 0.3 bpp.600 grayscale image of Vision Research Lab is used. 78%, 91.75% 

and 92.75% accuracy is achieved for SS,+-LSB and generic LSB respectively at 0.3 bpp. 

 

1.2.2 MOTIVATION 

The motivation for doing this work is based on the literature survey. Most of the work in the field that 

we came across attacks the problem where the steganography is carried out using the LSB embedding 

technique. So, we decided to generalize the problem so that the proposed can attack a wide range of 

steganography methods other than LSB embedding steganography with the goal of an increased 

accuracy percentage in comparison to the methods we have surveyed. Also, with the advent of 

steganography in the field of medical industry our proposed approach covered later in the paper is a 

dedication to the medical field and targeted medical organizations on making patient diagnosis 

information more secure. 



CHAPTER 1.3: PROPOSED METHOD 

 

1.3.1 PROPOSED METHOD 

The proposed method provides a steganalytic technique  to detect steganography on a 

grayscale image with the use of GLCM. The GLCM of cover images are calculated. Five of  

Haralick’s features are calculated on each of these images’ GLCM matrix. Following Haralick’s 

features are combined withthe Principal Component Analysis (PCA) features which are 

extracted from the GLCM of each of these images.  To avoid the complexity and bulkiness of 

this huge dataset, only the first few PCA features of each image are taken into consideration, 

since the useful information tends to be at the beginning in a PCA model. Same operations of 

feature extraction are carried out on stego-images, and each of their features are compared 

with that of their cover image counterpart via Neural Network classifier. 

A detailed description of the above method is given afterwards in the paper. 

1.3.1.1 GLCM calculation  

The proposed method calculates the GLCM as mentioned in [1] with changes in the value of 

the offset i.e.∆𝑥, ∆𝑦. To obtain the GLCM first we find the average of all the GLCM as shown 

in fig. 1.  

For GLCM along 0ᵒ we use the offset value (1,0). Similarly, for 45ᵒ, 90ᵒ, 135ᵒ we use offsets as 

(1,1), (0,1) and (-1,1) respectively. 

𝐺𝐿𝐶𝑀 =
𝐺𝐿𝐶𝑀0° +  𝐺𝐿𝐶𝑀45° + 𝐺𝐿𝐶𝑀90° + 𝐺𝐿𝐶𝑀135°

4
                                       (8) 

 

1.3.1.2 Feature Extraction 

a. Extraction of Haralick Texture Features: Robert M. Haralick has suggested many textural 

features which can be extracted from each of the gray-tone spatial-dependence matrices. For 

this method, only five of them have been calculated from the Gray-level Co-occurrence matrix 

(GLCM) of images obtained. 

Uniformity or energy                      = ∑ 𝑝𝑖,𝑗
2

n

𝑖,𝑗=0
    

Entropy                                             = ∑ 𝑝i,j ∗ log (𝑝i,j)
𝑛

𝑖,𝑗
   

Maximum Probability                     = 𝑚𝑎𝑥𝑖,𝑗   𝑝𝑖,𝑗    



Contrast                                            = ∑ |i − j|l ∗ 𝑝i,j
k

𝑛

𝑖,𝑗
   

Inverse difference moment           = ∑
𝑝𝑖,𝑗

|i−j|l

𝑛

𝑖,𝑗=0
𝑖≠𝑗

    

where, I and j are the ith row and jth column respectively in the normalized gray-level 

spatial-dependence co-occurrence matrix of an image. 

b. Extraction of Principle Component Analysis (PCA) Features: The GLCM matrix for a image is of 

the order 256X256 if the entire GLCM flattened into row form and used as the feature vector for the 

image classification then the dimensionality of the feature vector will be 65536 which is a huge 

number. To reduce the dimensionality PCA is used using SVD (Singular value Decomposition).  

In singular value decomposition of the matrix M of order nXm where n represents the number of 

observations of experiment and m=65536 represents data points associated with each experiment. 

𝑀𝑛𝑋𝑚 = 𝑈𝑛𝑋𝑛𝑆𝑛𝑋𝑚𝑉𝑚𝑋𝑚
𝑇                                   (9) 

Where U and V are orthogonal matrix and S is a rectangular diagonal matrix. 

The Eigen vectors of the matrix MMT behave as the columns for U. Similarly the Eigen vectors of the 

matrix  MTM behave as the columns for V. And the Eigen values for MMT and MTM are the singular 

elements of the S. 

We take first 100 columns from the matrix U as features. 

 

1.3.2 TRAINING THE CLASSIFIER 

The combination of the PCA features and the Haralick statistics are extracted from the GLCM of the 

image. The extracted feature vector is augmented with a value which behaves as the label for the class 

of the image which is requires in supervised learning. The model is trained using backward propagation 

algorithm. 
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1.3.3 FLOWCHART 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Standard image dataset 

Generation of average 

GLCM of each image as (2) 

Extraction of Haralick Statistics PCA of the GLCM using Singular 
Value Decomposition(SVD). 

      Calculation of MMT  

Find Eigen vectors of MMT 

Create a matrix M with vertical 
stacking of  flattened GLCM  
along row M has rows equal to 
number of images in dataset and 
columns = 65536   

For each GLCM we compute the Haralick 
Statistics  

Each eigen vector is stored in 
column major form and order of 
the matrix U is nXn 

FEATURE MATRIX(FM)= U augmented with  Haralick 

Statistics 

TRAINING CLASSIFIER TESTING CLASSIFIER 

MOD

EL 

CLEAN IMAGE 

STEGO IMAGE 

UNIFORMITY OR ENERGY OF GLCM 

ENTROPY OF GLCM 

MAXIMUM PROBABILITY OF GLCM 

CONTRAST OF GLCM 

INVERSE DIFFERENCE MOMENT OF GLCM  



1.3.4 ALGORITHM 

STEP 1: Average GLCM (G1) IS CALCULATED FOR EACH IMAGE. 

STEP 2: Haralick statistics are calculated for G1 based on equation (3),(4),(5),(6),(7).       

STEP 3: G1 IS FLATTEND IN T0 A ROW TO FORM A 1D ARRAY TO FORM R’. 

STEP 4: REPEAT STEP1 TO STEP3 AND VERTICALLY STACK EACH R’ to form a matrix 

(M). 

STEP 5: Calculate the new matrix M’=MMT. 

STEP 6: Calculate the eigen vectors for M’. 

STEP 7: Eigen vectors stored in column major form to form a matrix F.  

STEP 8: The feature matrix (FM) holds first 100 columns of F and haralick statistics 

combined. 

 

  

 

 



CHAPTER 1.4: RESULTS, ANALYSIS AND COMPARISON 
Accuracy: The accuracy of the model is defined as the ratio of correct predictions to total number of 

predictions. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝛼) =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                          (10) 

A image dataset named labeled faces in the wild (L.F.W.) is considered for experiment. 1300 images 

are randomly taken from this dataset and is converted into grayscale. This images are exposed to a 

steganography with 25%, 50%, 100% payload respectively to generate another 1300 image in each 

category. So the dataset comprised of 1300 cover images and 3900 stego images. Since number of 

stego images is greater than cover image to avoid the bias during the classification separate 

classification is carried out on models with same parameters.  

The neural network is trained using stochastic gradient descent replacement optimization algorithm 

‘adam’ with 64 nodes each densely connected in each of the 3 hidden layers. Each hidden layer uses 

tan inverse (tanh) as activation function. The number of nodes in input layer varies with length of 

feature vector. 

 The accuracy values α lies in the range [0,1] i.e. 0≤α≤1 and  α0 means lower accuracy.  

Table(a) denotes the accuracy of the model for L.F.W. datasets. 

Whereas Table(b) denotes the comparison of the proposed method with other methods. 

Category of the Model Accuracy 

Detection between Cover and images 

embedded with 25% payload. 
0.8095 

Detection between Cover and images 

embedded with 50% payload. 
0.8909 

 

Detection between Cover and images 

embedded with 100% payload. 
0.9093 

 

(a) 

The same model is used for  Break Our Steganographic System(BOSS) dataset which is benchmark in 

the field of  steganography and  steganalysis. The dataset compsed of  10000 color images. Among 

these 1300 images were selected at random. This images are exposed to a steganography with 25%, 

50%, 100% payload respectively to generate another 1300 image in each category. So the dataset 

comprised of 1300 cover images and 3900 stego images.The comparison of the method proposed in 

the paper  to that of some previous methods is given as follows. 



Category of the Model Accuracy of 

proposed 

method 

Accuracy of 

ALE 

Accuracy of 

Model with 

texture 

feature[] 

Subtractive 

pixel adjacency 

matrix(SPAM) 

Detection between Cover 

and images embedded 

with 25% payload. 

0.844854 0.3214 
 

 

 

 

 

 

0.8288 
 

0.9512 

Detection between Cover 

and images embedded 

with 50% payload. 

0.843317 

 

0.5835 

 

0.9774 

 

Detection between Cover 

and images embedded 

with 100% payload. 

0.846390 

 

0.7335 

 

0.9512 

 

(b) 

 

  

 

Loss curve for validation and accuracy for comparison of  

Cover and 25% payload embedded images. 

   

Accuracy curve for validation and accuracy for 

comparison of Cover and 25% payload embedded 

images. 

 



  

 

Loss curve for validation and accuracy for comparison of Cover and 25% 

payload embedded images. 

 

 

Accuracy curve for validation and accuracy for comparison of Cover 

and 25% payload embedded images. 

 

 

 

Accuracy curve for validation and accuracy for comparison 

of Cover and 25% payload embedded images. 

 

 

PCA curve for the same instance as previous we 

see d 

 

Loss curve for validation and accuracy for comparison of 

Cover and 25% payload embedded images. 

 

 

PCA curve for an instance of feature vector for 500 

points 



CHAPTER 1.5: CODE 
The programming  language used to conduct the experiments is done using Python. Also the software 

used for steganography to create datasets is done using StegHide.   

Code snippet for generating average GLCM and creating the matrix from this GLCM’s:  

import imageio 
import numpy as np 
import os 
import pickle 
def co_occurence(img): 
    glcm=np.empty([256,256],dtype=np.float) 
    glcmr=np.full_like(glcm,0) 
    glcmur=np.full_like(glcm,0) 
    glcmu=np.full_like(glcm,0) 
    glcmul=np.full_like(glcm,0) 
    for i in range(img.shape[0]): 
        for j in range(img.shape[1]): 
            r=j+1 
            u=i-1 
            l=j-1 
            if r<img.shape[1]-1: 
                glcmr[img[i,j],img[i,r]]+=1 
            if u>=0: 
                glcmu[img[i,j],img[u,j]]+=1 
            if u>=0 and r<img.shape[1]-1: 
                glcmur[img[i,j],img[u,r]]+=1 
            if u>=0 and l>=0: 
                glcmul[img[i,j],img[u,l]]+=1 
    return (glcmr+glcmu+glcmur+glcmul)//4 
l=[] 
c=0 
for i in os.listdir('./../bossbase_gray'): 
 c+=1 
 if c>1301: 
  break 
 else:  
     imgo=co_occurence(imageio.imread('./../bossbase_gray/'+i)).ravel() 
     l.append(imgo) 
l=np.array(l) 
file=open('featureo','wb') 
pickle.dump(l,file)     
 

Code snippet for converting the matrix using PCA decomposition: 

import pandas as pd 
from sklearn.decomposition import PCA 
import csv 
import numpy as np 
import os 



import pickle 
 

# LOADING MATRIX OF GLCM 
fo=open('featureo','rb') 
f25=open('feature25','rb') 
f50=open('feature50','rb') 
f100=open('feature100','rb') 
#Conversion into Pandas Frame 
do=pd.DataFrame(pickle.load(fo)) 
d25=pd.DataFrame(pickle.load(f25)) 
d50=pd.DataFrame(pickle.load(f50)) 
d100=pd.DataFrame(pickle.load(f100)) 
pca=PCA() 
print(pca) 
 

#PCA conversion 
l=pd.DataFrame(np.array([0 for  i in range(1301)])) 
to=pd.DataFrame(np.array(pca.fit_transform(do))[:,:500]) 
to=pd.concat((to,l),axis=1) 
print(to.shape) 
l=pd.DataFrame(np.array([1 for  i in range(1301)])) 
t25=pd.DataFrame(np.array(pca.fit_transform(d25))[:,:500]) 
t25=pd.concat((t25,l),axis=1) 
print(t25.shape) 
l=pd.DataFrame(np.array([1 for  i in range(1301)])) 
t50=pd.DataFrame(np.array(pca.fit_transform(d50))[:,:500]) 
t50=pd.concat((t50,l),axis=1) 
print(t50.shape) 
l=pd.DataFrame(np.array([1 for  i in range(1301)])) 
t100=pd.DataFrame(np.array(pca.fit_transform(d100))[:,:500]) 
t100=pd.concat((t100,l),axis=1) 
print(t100.shape) 
transformed=pd.concat((to,t25,t50,t100),axis=0) 
print(transformed.shape) 
 

#SAVING TO EXCEL FILE 
transformed.to_excel('pca.xlsx') 
 

 

Calculation of Haralick Features 

import pickle 

import numpy as np 

import pandas 

from scipy import stats 

#loading the GLCM 

file=open('feature100','rb') 

dfo=pickle.load(file) 

 



#CALCULATION OF ENTROPY  AND  MAXIMUM 

entropyo=[] 

mo=[] 

for i in dfo: 

    k=i/(512*512) 

    entropyo.append(stats.entropy(k)) 

    mo.append(k.max()) 

 

#CALCULATION OF POWER 

power=[] 

for i in dfo: 

    k=i/(512*512) 

    power.append((k*k).sum()) 

 

#CALCULATION OF CONTRAST AND INVERSE DIFFERENCE MOMENT 

l=np.array([-i for i in range(256)]) 

k=[] 

for i in range(256): 

    k.append(l+i) 

k=np.abs(np.array(k)).ravel()   

contrast=[] 

inv=[] 

for i in dfo: 

    j=i/(512*512) 

    contrast.append((j*k).sum()) 

l=np.array([-i for i in range(256)]) 

k=[] 

for i in range(256): 

    k.append(l+i) 

for i in range(256): 

    k[i][i]+=1 

k=np.abs(np.array(k)).ravel()   

for i in dfo: 

    j=i/(512*512) 

    t=(j/k) 

    y=np.reshape(t,(256,256)) 

    inv.append(t.sum()-y.diagonal().sum()) 

new=np.dstack((entropyo,mo,power,contrast,inv)) 

df=pandas.concat((dfori,df25,df50,df100),axis=0) 

df.to_excel('haralick.xlsx') 

 

The Haralick Features and PCA matrix are combined together in spreadsheet software. 

The new matrix found is passed for training in Neural Network. 

 



Code snippet for training, testing and validation of models: 

import pandas as pd 

from sklearn.decomposition import PCA 

import csv 

from sklearn.model_selection import train_test_split 

from sklearn import neural_network as nn 

from sklearn import svm 

from sklearn.model_selection import cross_val_score 

from sklearn.model_selection import cross_validate 

import numpy as np 

import os 

import pickle 

from keras.models import Sequential 

from keras.layers import Dense,Dropout 

from keras.optimizers import RMSprop,Adam 

from keras.utils import to_categorical 

import matplotlib.pyplot as plt 

df=pd.read_excel('pca.xlsx') 

df=np.array(df) 

do=pd.DataFrame(df[:1301]) 

d25=pd.DataFrame(df[1301:2602]) 

df50=pd.DataFrame(df[2602:3903]) 

df100=pd.DataFrame(df[3903:5204]) 

do25=pd.concat((do,d25),axis=0) 

do50=pd.concat((do,df50),axis=0) 

do100=pd.concat((do,df100),axis=0) 

train,test=train_test_split(do25[:]) 

print(train.shape,test.shape) 

trainx=np.array(train)[:,:105] 

trainy=np.array(train)[:,505] 

testx=np.array(test)[:,:105] 

testy=np.array(test)[:,505] 

 

#COMPARISON OF COVER IMAGE TO 25% PAYLOAD STEGO IMAGES 

train_y=to_categorical(trainy,2) 

test_y=to_categorical(testy,2) 

model=Sequential() 

model.add(Dense(64,activation='tanh',input_shape=(205,))) 

model.add(Dropout(0.2)) 

model.add(Dense(32,activation='tanh')) 

model.add(Dropout(0.2)) 

model.add(Dense(16,activation='relu')) 

model.add(Dense(2,activation='softmax')) 

model.summary() 

model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy']) 



history=model.fit(trainx,train_y,validation_data=(testx,test_y),verbose=0,batch_size=10,epochs=500

) 

loss=history.history['loss'] 

acc=history.history['acc'] 

val_loss=history.history['val_loss'] 

val_acc=history.history['val_acc'] 

plt.plot(range(500),loss,label='accuracy') 

plt.plot(range(500),val_loss,label='validation') 

plt.legend() 

plt.show() 

plt.plot(range(500),acc,label='accuracy') 

plt.plot(range(500),val_acc,label='validation') 

plt.legend() 

plt.show() 

score=model.evaluate(testx,test_y) 

print(score[1]) 

 

#Cover to 50% payload comparison 

train,test=train_test_split(do50[:]) 

print(train.shape,test.shape) 

trainx=np.array(train)[:,:205] 

trainy=np.array(train)[:,505] 

testx=np.array(test)[:,:205] 

testy=np.array(test)[:,505] 

train_y=to_categorical(trainy,2) 

test_y=to_categorical(testy,2) 

model=Sequential() 

model.add(Dense(64,activation='tanh',input_shape=(205,))) 

model.add(Dropout(0.2)) 

model.add(Dense(32,activation='tanh')) 

model.add(Dropout(0.2)) 

model.add(Dense(16,activation='relu')) 

model.add(Dropout(0.2)) 

model.add(Dense(2,activation='softmax')) 

model.summary() 

model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy']) 

history=model.fit(trainx,train_y,validation_data=(testx,test_y),verbose=0,batch_size=10,epochs=500

) 

loss=history.history['acc'] 

plt.plot(range(500),loss) 

plt.show() 

score=model.evaluate(testx,test_y) 

print(score[1]) 

loss=history.history['loss'] 

acc=history.history['acc'] 



val_loss=history.history['val_loss'] 

val_acc=history.history['val_acc'] 

plt.plot(range(500),loss,label='accuracy') 

plt.plot(range(500),val_loss,label='validation') 

plt.legend() 

plt.show() 

plt.plot(range(500),acc,label='accuracy') 

plt.plot(range(500),val_acc,label='validation') 

plt.legend() 

plt.show() 

 

#Cover to 100% payload comparison 

train,test=train_test_split(do100[:]) 

print(train.shape,test.shape) 

trainx=np.array(train)[:,:105] 

trainy=np.array(train)[:,505] 

testx=np.array(test)[:,:105] 

testy=np.array(test)[:,505] 

train_y=to_categorical(trainy,2) 

test_y=to_categorical(testy,2) 

model=Sequential() 

model.add(Dense(64,activation='tanh',input_shape=(105,))) 

model.add(Dropout(0.2)) 

model.add(Dense(32,activation='tanh')) 

model.add(Dropout(0.2)) 

model.add(Dense(16,activation='relu')) 

#model.add(Dropout(0.2)) 

model.add(Dense(2,activation='softmax')) 

model.summary() 

model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy']) 

history=model.fit(trainx,train_y,validation_data=(testx,test_y),verbose=0,batch_size=20,epochs=500

) 

loss=history.history['acc'] 

plt.plot(range(500),loss) 

plt.show() 

score=model.evaluate(testx,test_y) 

print(score[1]) 

loss=history.history['loss'] 

acc=history.history['acc'] 

val_loss=history.history['val_loss'] 

val_acc=history.history['val_acc'] 

plt.plot(range(500),loss,label='accuracy') 

plt.plot(range(500),val_loss,label='validation') 

plt.legend() 

plt.show() 



plt.plot(range(500),acc,label='accuracy') 

plt.plot(range(500),val_acc,label='validation') 

plt.legend() 

plt.show() 

 

 

CHAPTER 1.6: CONCLUSION 

In this paper we have proposed a new blind steganalysis method for detection of steganography in 

grayscale images and evaluated its performance on L.F.W. and BOSSBase image datasets which have 

been converted to grayscale images.The suggested method uses PCA and Haralick features of the 

average GLCM to extract the feature of image and passed these extracted features into a Neural 

Network for training. Extensive experimental results demonstrated that the proposed steganalyser 

performs a lot better when we take first 100 PCA components into account combined with Haralick 

texture features. In future we plan to extend this method towards detecting steganography in color 

images and also predict the length of secret message embedded in image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 2: EXTENDING THE APPROACH BY USE OF 

CONVOLUTIONAL NEURAL NETWORKS 

 

CHAPTER 2.1 INTRODUCTION 

Steganography has been used as an effective methodology in hiding secret data within images in the 

past. With advent of newer steganographic algorithms in past few decades aiming to secure hidden 

data, advancement in steganalysis methods has also been made to detect powerful embedding within 

cover images which were once impossible. In view of this, Convolutional Neural Network (CNN) has 

shown huge success over two-part structure of traditional machine learning methods. In this paper, 

we focus on the methodology of some popular spatial domain image steganalysis convolutional neural 

networks proposed in existing literature and compare their detection accuracy rates against standard 

embedding steganographic algorithms like WOW, S-UNIWARD, HILL, etc with variety of payloads. 

 

2.1.1 CONVOLUTIONAL NEURAL NETWORKS IN STEGANALYSIS 

The network consists of a given number of blocks that consists of neurons that take real input values, 

perform calculations, and then transmit the actual calculated values to the next block. The 

Convolutional Neuronal Networks used for steganalysis are mainly built in three parts, which we will 

call modules: the pre-processing module, the convolution module, and the classification module.  

2.1.1.1 Pre-processing module  

In the pre-processing module the image is filtered by high-pass filters. This preliminary filtering step 

allows the network to converge faster and is probably needed to obtain good performance when the 

learning database is too small [107] (only 4 000 pairs cover/stego images of size 256 × 256 pixels). The 

filtered images are then transmitted to the first convolution block of the network.  

2.1.1.2 Convolution module 

Specifically, a block takes a set of feature maps (a set of images) as input and returns a set of feature 

maps as output (a set of images). Inside a block, there are a number of operations including the 

following four:  

a. Convolution  

A convolution is carried out between the input image and a filter. Except for the pre-processing block, 

in the other blocks, once the convolution has been applied, we apply activation, pooling, and 

normalization. Then we obtain a new image named feature map. The combined operation in 

convolution can be replaced by a separate operation called Depthwise Separable Convolutions, which 

allows us to integrate activation function such as a ReLU, between the spatial convolution and the 

convolution on the “depth” axis (for the “depth” axis we use a 1 × 1 filter). Thus, the Depthwise 

Separable Convolution can roughly be resumed as a weighted sum of convolution which is a more 

descriptive operation than just a sum of convolution. 

 



b.  Activation  

Once each convolution of a convolution block has been applied, an activation function is applied on 

each value of the filtered image. The activation function can be one of several, for example be an 

absolute value function f(x) = |x|, a sinusoidal function f(x) = sinus(x), a Gaussian function as in [80] 

f(x) = e −x 2 σ2 , a ReLU (for Rectified Linear Unit): f(x) = max(0, x), etc. These functions break the 

linearity resulting from linear filtering performed during convolutions. The chosen activation function 

must be differentiable to perform back-propagation. The most often retained solution for the 

selection of an activation function is one whose derivative requires little calculation to be evaluated. 

Besides, functions that have low slope regions, such as the hyperbolic tangent, are also avoided, since 

this type of function can cause the value of the backpropagated gradient to be canceled during back-

propagation, and thus will make learning impossible. Therefore, in many networks, we very often find 

the ReLU activation function, or one of its variants.  

c. Pooling  

The pooling operation is used to calculate the average or the maximum in a local neighborhood. In 

most steganalysis networks, it is preferred to use average pooling to preserve stego noise which is of 

very low power. Moreover, pooling is often coupled to a down-sampling operation (when the stride 

is greater than 1) to reduce the size (i.e., the height and width) of the resulting feature map compared 

to feature maps from the previous block. 

d. Normalization 

One additional step called batch normalization is applied after certain layers in the CNN. Batch 

normalization is a technique used to increase the stability of a neural network. It helps our neural 

network to work with better speed and provide more efficient results. 

Given a random variable X whose realization is a value x ∈ R of the feature map, the BN of this value 

x is: 

 

 

with E[X] the expectation, V ar[X] the variance, and γ and β two scalars representing a re-scaling and 

a re-translation. The expectation E[X] and the variance V ar[X] are updated at each batch, while γ and 

β are learned by back-propagation. 

2.1.1.3 Classification module  

This classification module is often a traditional neural network where each neuron is fully connected 

to the previous block of neurons and to the next block of neurons. The fully connected blocks often 

end with a softmax function which normalize the outputs delivered by the network between [0, 1], 

such that the sum of the outputs equal one. So, in the usual binary steganalysis scenario, the 

network delivers two values as output: one giving the probability of classifying into the first class 

(cover), and the other giving the probability of classifying into the second class (stego). The 

classification decision is then obtained by returning the class with the highest probability. In front of 

this classification module, a global average pooling, a Spatial Pyramid Pooling, a statistical moments 



extractor, etc are found. Such pooling operations return a fixed-size vector of values, that is to say, a 

feature map of fixed dimensions. The next block to this pooling operation is thus always connected 

to a vector of fixed size. 

 

CHAPTER 2.2 RELATED WORK & COMPARISON 
 

2.2.1 RELATED WORK  

Xu et al.[16] used BOSSbase with 10,000 images (512*512) as their dataset. They proposed a 

Convolutional Neural Network (CNN) architecture named Xu-Net. The input image is first passed 

through a high pass filter of kernel size (5*5*1) to amplify signal to noise ratio. After this the obtained 

image is passed in to the CNN model. The CNN converts each image into feature vector of 128 

dimensions. The architecture is divided into 5 components along with a fully connected neural 

network. Each component starts with generating feature maps and ends with average pooling. In 

group 1 the 8 feature maps are generated using kernel of size (5*5*1). This are converted into absolute 

values. After which batch normalization is applied before passing it to activation function layer with 

TanH. After this average pooling of size (5*5) is executed to generate (8*256*256). In group 2 the 16 

feature maps are generated using kernel size(5*5*8). After which batch normalization is applied and 

TanH activation and average pooling (5*5) stride 2 to generate (16*128*128). In group 3 the 32 

feature maps are generated using kernel size (1*1*16) . Then BN and ReLU is applied and then average 

pooling of size (5*5) of stride 2 to generate (32*64*64). In group 4 the 64 feature maps are generated 

using kernel size(1*1*32) . Then BN and ReLU are applied and then average pooling of size (5*5) of 

stride 2 to generate (64*32*32). In group 5 the 128 feature maps are generated using kernel size 

(1*1*64). The BN and ReLU is applied after which a global average polling is applied using a kernel of 

size (32*32) to generate 128(1*1). This 128*(1*1) are passed into the fully connected neural network 

with Softmax in output layer. BN is used to convert input layer into a zero mean and unit variance. 

Detection accuracy of S-UNIWARD algorithm at 0.1 bpp by CNN is 57.33% and by SRM is 59.25%, and 

at 0.4 bpp by CNN is 80.24% and by SRM is 79.53%. Detection accuracy of HILL algorithm at 0.1 bpp 

by CNN is 58.44% and by SRM is 56.44%, and at 0.4 bpp by CNN is 79.24% and by SRM is 75.47%.  

 Yedroudj et al.[17] used BOSS, BOWS2, VA datasets and proposed an architecture named 

Yedroudj-Net which is similar to Xu-Net except that in first two groups Trunc function is used instead 

of TanH function similar to Ye-Net. Along with that the neural network has 256, 1024 hidden layers 

with ReLU activation function and output layer with two nodes having Softmax as activation function. 

Results showed that error probability rate of Yedrouj-Net for WOW at 0.2 bpp is 27.8% and at 0.4 bpp 

is 14.1%, and for S-UNIWARD at 0.2 bpp is 36.7% and at 0.4 bpp is 22.8%. Error probability of Yedrouj-

Net at 0.2 bpp for BOSS  dataset is 27.8%, for BOSS+BOWS2 is 23.7% and for BOSS+BOWS2+VA is 

20.8%. 

 Reinel et al.[18] used BOSSbase 1.01, BOWS 2 databases (10,000 grayscale images of size 

512×512×1 changed to a size of 256×256×1) for their proposed GBRAS-Net. The pre-processing data 

normalisation stage consists of a convolution with 30 filters of size (5,5), which are not modified in 

training phase. The convolutional layers in this stage are configured with same padding, strides of 

(1,1), with 30 filters, and a 3TanH activation function with values between −3 and 3. The 30 filters used 



to pre-process the images are derived from YE-NET which showed a high pre-processing capacity for 

subsequent feature extraction. These 30 filters are normalized by the maximum absolute value of each 

filter. This filter set is composed of 8 filters class 1, 4 filters class 2, 8 filters class 3, 1 filter square 3×3, 

4 filters edge 3×3, 1 filter square 5×5, and 4 filters edge 5×5. Set of filters are selected and divided into 

seven classes according to their original use to obtain better performance for the feature extraction 

stage. Maximum absolute value of each filter type was used to normalize each of its values. The 

feature extraction stage uses convolutional layers, separable convolutions, and depth-wise 

convolutions with adjustment in the parameters and filters to enhance performance. Feature 

extraction also uses shortcuts and the same padding was used and the same number of filters were 

contained within the layers between the start and end of the shortcut. Average Pooling layers after 

Batch Normalization were used to reduce dimensionality, with a configuration of a pool_size(2,2) and 

strides(2,2). There are six convolutional layers with (3,3) filters, and at the end of the stage, there are 

two convolutional layers with kernel_size (1,1). The activation function used for all convolutions and 

separable convolutions is Exponential Linear Unit (ELU). The strides are (1,1) and the padding is same 

in all convolutions. The first two convolutional layers of this stage have 30 filters, while the next four 

have 60 filters, the penultimate has 30, and the last has 2. The network has separable convolutions 

inside shortcuts, with 30 and 60 filters, a kernel_size of shape (3,3), strides (1,1), same padding, and 

depth_multiplier of 3. Global average pooling is done in the end of the stage to prepare the features 

for classification In the last Batch normalization of shape 16×16×2, with a global average pooling 2D 

generates two values; then, the predictions are obtained with the Softmax function. The data 

distribution was 4000, 1000, and 5000 pairs of images for Training, Validation, and Testing 

respectively. Compared with ZHU-Net architecture, the proposed CNN shows improved accuracy on 

BOSSbase 1.01 dataset, by 3.4% on WOW with 0.2 bpp and 1.7% on WOW with 0.4 bpp, 2.2% and 

2.6% on S-UNIWARD (0.2 and 0.4 bpp respectively), 3.1% and 5.3% on MiPOD (0.2 and 0.4 bpp), 1.9% 

and 5.4% on HILL (0.2 and 0.4 bpp), 6.5% and 5.2% on HUGO (0.2 and 0.4 bpp), (see Tables 1, 2). When 

using BOWS 2 on the training data, the improvements for 0.2bpp are of 0.7% and 2.2% for WOW and 

S-UNIWARD, respectively. 

 Zhang et al.[19] used BOSSBase v1.01 dataset (10,000 uncompressed grey-level images of size 

512×512), BOWS2 (10,000 uncompressed grey-level images of size 512×512) for their proposed Zhu-

Net. The CNN is composed of one image pre-processing layer, two separable convolution (sepconv) 

block, four basic blocks for feature extraction, a spatial pyramid pooling (SPP) module, and they are 

fully connected layers followed by a Softmax. The convolutional blocks have four blocks marked as 

Basic Block 1(Convolution layer), Basic Block 2(Batch Normalisation layer), Basic Block 3(Non-liner 

activation function), and Basic Block 4(Average pooling layer) to extract spatial correlation between 

feature maps and finally transport to the fully connected layer for classification. The size of the 

convolutional kernels is 3×3 for the Basic Block 1-4. For Basic Block 1 to Basic Block 4, there are 32, 32, 

64, 128 channel to extract local features. Batch normalization is usually used to normalize the 

distribution of each mini-batch to a zero-mean and a unit-variance during the training to prevent the 

gradient vanishing/exploding and over-fitting in the deep neural network, and allow relatively large 

learning rate to speed up the convergence. Rectified Linear Unit (ReLU) is used  as the activation 

function for all blocks to prevent gradient vanishing/exploding, produce sparse features, accelerate 

network convergence, extract more efficient features and benefit back-propagation gradient 

calculations. Average pooling layers are used in Basic Block 1 to Basic Block 3, to down-sample feature 

maps, abstract the image features, enlarge the receptive fields and enhance the generalization ability 



of the network. Fourth Block is excluded from pooling to avoid information loss. Separable convolution 

blocks (Sepconv Blocks 1and 2) are used to enhance SNR (signal noise ratio of stego signal to image) 

and better treat the spatial and the channel correlations. In the last block, a SPP (Spatial pyramid 

pooling) module is used to better extract features. The SPP module enriches feature expressions by 

multi-level pooling. At the end of Zhu-Net, three fully connected layers are used, where the number 

of neurons is 2688, 1024 and 2. The final fully connected layer use a softmax activation function to 

produces the score of two class labels (cover or stego). The BOSSBase images were randomly split into 

a training set with 4,000 cover and stego image pairs, a validation set with 1,000 image pairs, and a 

testing set containing 5,000 image pairs. The experiment results show that when the training set is 

incremented, the detection performance for all the networks will be improved compared with that 

using the BOSS training set only. For WOW at 0.2 bpp, using training set BOSS+BOSW2 comparing to 

using only BOSS training set, Zhu-Net reduced the error rate by 5.5% and for S-UNIWARD at 0.2 bpp, 

the detection error rates of Zhu-Net decreased by 4.2% comparing to only using BOSS training dataset. 

Further training three networks on BOSS + BOWS2 + DA showed decreased detection error by 10.2% 

and 11.4% against WOW and S- UNIWAR. In addition, for S-UNIWARD and WOW with different 

payloads, the proposed network is 8.0% to 9.5% better than Xu-Net, 5.3% to 7.4% better than Ye-Net, 

4.4% to 8.5% better than Yedroudj-Net and 1.3% to 4.1% better than SRNet. 

 You et al.[20] used 10,000 BOSSbase 1.01 native resolution images (both 512 x 512 and 256 x 

256 resized) for their proposed SiaStegNet. The proposed approach is based on Siamese architecture 

consisting of two symmetrical subnets each comprising of pre-processing and feature extraction 

phases. First, the two sub-areas of the input image (generated by dividing the image vertically from 

middle) separately enter the two parallel subnets. The subnets consist of structures, parameters and 

weights. The pre-processing phase used at front of each subnet produce noise residuals with the help 

of learnable SRM kernels. Each image sub-region is first passed through convolutional layer and 

weights of this layer are initialised to SRM filters (5 x 5 for a total of 30), also updated along with 

training. The convolution layers are denoted with kernel size x kernel size filters and numbers of 

output channel feature maps. Some continuous, un-pooled convolutional blocks, each consisting of 4 

elements: the ‘Conv3-30’s, batch normalisation (BN) layers, rectified linear units (ReLU) and a 

shortcut, are used to enhance the effect of extracting, referred to as SRNet as a whole. BN is adopted 

immediately after each Conv3-30 and before each ReLU. “Conv3” (3 x 3) is used as the smallest 

receptive field to capture the notions of left/right/up/down/center in accordance with the theory of 

VGGNet method. Next, the feature extraction phase extracts the feature vector of each sub-area noise 

residual. Down-sampling is performed by setting a stride of 2 at the first convolutional layer of Block 

B. Once feature map size is halved, the number if filters of subsequent convolutional layers are 

approximately doubled. Next, a global average pooling layer reduces the feature dimensionality of 

input image of any size to the number of channels (128), which is obtained as output representing 

sub-region of each image. These two sets of features are imported into a symbiotic relationship within 

the original image. The feature vectors of the two subnets are learned under the direction of two 

supervisory signals in the fusion/classification phase. One calculates four element-wise statistical 

moments of two subnet outputs and concatenates them. The resulting 4 x 128 (number of channels) 

= 512 dimensional vectors which captures information from sub-areas of their relationships are fed 

into two-class classifier (a fully-connected layer culminating in a Softmax layer with ross-entropy loss). 

A dropout layer with dropout ratio 0.5 is added before classifier to prevent over-fitting. The second 

signal in classification phase is a similarity signal which measures similarities between feature vectors 



extracted from different image sub-regions of a cover image, which is achieved via contrastive loss 

based on the Euclidean distance. 10,000 BOSSbase 1.01 native resolution images were divided into 

training, validation, and testing ratio set of 6:1:3. They were cropped into squares and resized to 256 

x 256 referred to s BOSS_256. Similarly a database of size 512 x 512 images were obtained, referred 

to as BOSS_512. Corresponding accuracy results are taken as output value of the objective function 

for tuning the network hyper-parameter and its architecture. The value of hyper-paramter was set to 

0.1 in above experiment. The accuracy of detecting images was respectively increased by using two 

symmetrical subnets and by adding statistical moments and LSML. The detection accuracy of proposed 

SiaStegNet are 76.16%, 72.99%, 69.17% at 0.1 bpp, 85.57%, 83.29%, 77.26% at 0.2 bpp, 89.91%, 

88.43%, 82.38% at 0.3 bpp and 92.09%, 91.89%, 85.97% at 0.4 bpp for WOW, S-UNIWARD and HILL 

embedding algorithms respectively. 

 Li et al.[21] used BOSSBase v1.01 dataset (10,000 uncompressed images of size 512x512). 

Their proposed CNN structure, ReST-Net composed of three parallel convolutional subnets and a fully 

connected classification module. Each subnet accepts an input image of size 512x512 and outputs a 

256-D feature vector. These subnets act as data-driven feature extractors, and are built based on Xu-

CNN. In Xu-CNN, TanH is used for activation in the first two convolutional groups and ReLU is used in 

the last three. Diverse Activation Modules are formed using ReLU, Sigmoid, and TanH activation 

functions simultaneously in the second and fourth convolutional groups. DAM is not used in all 

convolutional groups so that number of weights in convolutional kernels does not increase to make it 

more efficient for convergence. The structures of the three subnets are identical except for their pre-

processing layers equipped with different sets of high-pass filtering operations where N is the number 

of the filtered residuals. In subnet 1 the input image is pre-processed by filtering with a set of 6x6 

Gabor (product of a Gaussian function and a cosine function) filters and the resulting images are the 

input of the first convolutional block. The resulting 16 filters and residual maps are made zero-mean 

by subtracting the mean of the filter elements. In subnet 2 the input image is pre-processed by linear 

filtering with a set of high-pass filters from SRM, padded with zeros to obtain a unified size of 5x5, 

then they are grouped into nine classes. 16 filters are selected to obtain 16 linear residual images used 

as pre-processed inputs for subnet 2. In subnet 3 the input image is first pre-processed by filtering 

with some SRM high-pass filters and the resultant residual images are non-linearly processed with 

‘max’ or ‘min’ operator which computes the maximum or minimum values among the residual images 

within a filter class. The filters in the first seven classes are pre-processed in this manner finally 

resulting in 14 nonlinear residual images used as pre-processed inputs for subnet 3. The CNN model 

is trained in two phases. In the first phase, each subnet is pretrained independently with a fully 

connected layer and a Softmax function to classify cover and stego images. After training parameters 

in the subnets are fixed without further training and the fully connected layers are discarded. In 

second phase, a new fully connected layer with 768(256x3) input neurons is fed with the concatenated 

output feature vectors from the finals convolutional groups of all three subnets. Then this fully 

connected layer is trained which acts as the final classification module. This training process has two 

phases, one training the subnets for feature extraction and training the fully connected layer for 

classification. S-UNIWARD, HILL, and CMD-HILL steganographic algorithms were used for data 

embedding with payload from 0.1 to 0.5 bpp on the dataset. Images were randomly split into a training 

set of 4000 cover and stego image pairs, a validation set of 1000 image pairs, and a testing set of 5000 

image pairs. On S-UNIWARD, HILL, and CMD-HILL with different payloads, ReST-Net got an average 

accuracy improvement of 5.77%, 5.27%, and 3.83% over Xu-CNN, and 5.77%, 5.27%, and 2.83% over 



TLU-CNN respectively. Also, when only one subnet is used with increased number of filters for pre-

processing, it is less effective than using more subnets with less number of filters. Performance 

increases when number of subnets increase. 

 Jin et al.[22] in their IAS-CNN used BOSSBase v1.01 dataset (10,000 512 x 512 gray-level 

images). Their proposed network contains pre-processing layer, feature extraction layer, ad 

classification layer. In pre-processing layer, one of the filters of SRM used as the convolution kernel is 

used to extract residual features of the image. The number of residual maps generated from each 

image, say N in the pre-processing layer is equal to the number of filters, and the number of weights 

in the second convolutional layer can be expressed as 16 x (3 x 3) x N. Filter size of 3 x 3 or 5 x 5 are 

chosen as the convolutional kernels of the pre-processing layer. 3 filters are selected from 3 classes to 

initialise convolution kernels of size 3 x 3 and 2 filters are taken from 2 classes to initialise 

convolutional kernels of size 5 x 5. Selected filters are normalised and form of residual residual 

extraction is preserved before initialising the convolutional kernel of size 3 x 3 in SRM in the first layer 

of pre-processing layer. Then the features are combined with knowledge of selection channel as 

output. ReLUs are used as the non-liner activation functions from the second convolutional layer to 

the sixth convolutional layer. Feature extraction layer is composed of 5 convolutional layers (first 4 

convolutional layers used 16 convolutional kernels of size 3 x 3, while the remaining one uses 16 

convolutional kernels of size 5 x 5) and 5 average pooling layers with stride 2. The final classification 

layer consists of two 128-D feature fully connected layers, two dropout layers with parameter of 0.5, 

and a two-way Softmax. The Softmax is implemented by a fully connected layer and Softmax function. 

Dataset images were scaled to 256 x 256 pixels, and divided into training set of 8000cover images and 

8000 steganographic images, validation set of 1000 cover images and 1000 steganographic images, 

and test set of 1000 cover images and 1000 steganographic images. Detection accuracy of IAS-CNN 

against WOW steganographic algorithm was 68.15% at 0.2 bpp and 80.75% at 0.4 bpp, and against S-

UNIWARD steganographic algorithm was 62.40% at 0.2 bpp and 75.05% at 0.4 bpp. IAS-CNN is more 

effective in benefiting from fewer convolutional computations and limited computing resources. 

 Qian et al.[23] used BOSSbase dataset that contains 10,000 images which are processed to 

the size 512x512 pixels in their proposed method. High-pass filters are applied in image processing 

layer with kernel size 5x5. Feature extraction module consists of five convolutional layers which 

include three kind of operations convolution, non-linear activation and pooling. Some filters are 

learned in 1-5 convolutional layers in proposed network on HUGO algorithm with payload of 0.5bpp: 

16 learned filters of size 5x5 in layer 1, 256 filters of size 3x3 in layers 2-4 and 256 filters of size 5x5 in 

layer 5. Detection error of CNN model against HUGO algorithm when using different activation 

function and pooling operation-Gaussian (ave pool-17.20%,max pool-19.05%), I-Gaussian (ave pool-

16.55%, max pool-19.65%), ReLU (ave pool-16.65%, mamx pool-19.68%), TanH (ave pool-17.28%, max 

pool-18.95%). Dropout normalization method is proposed to be used in CNN architecture. In 

classification Layer a two-way Softmax activation is used on the top layer. Finally extracted features 

256 and each of the first two fully connected layers has 128 neurons and output of each neuron is 

activated by ReLUs. Trainable parameters in five convolutional layers are 13792 and 63456 parameters 

in whole network. They train CNN model using mini-batch stochastic gradient descent with mini-batch 

size of 128 images. Firstly training is done on 80% cover/stego pairs of training set and rest of the 

training set is used for validation. Features learned from high layer are more effective in the proposed 

method. Detection error for ensemble classifier is lower than Softmax classifier. Combination of 

learned features and handcrafted features improve detection performance. 



 Zhang et al.[24] used reduced dimension of BOSSBase dataset in their proposed AG-Net. The 

network initially has pre-processing block which uses a high pass filter to extract residual noise 

components. It has predefined high pass kernel which is applied over the image with padding 2 and 

stride 1. After this the image obtained by applying high pass kernel is provided as input to the 

confrontation module. The model has four confrontation module chained together. Where the first 

confrontation module receives from the high pass kernel and each successive confrontation module 

receives from the previous confrontation module. Each confrontation module comprises of two 

compound block which are identical and one confrontation block. The compound model encapsulate 

convolutional kernel, batch normalization, scaling, non-linear activation functions, pooling 

components which are common to any convolutional neural network. The confrontation block 

calculates the difference of the feature extracted from both the compound block for each cover and 

stego image. The feature extracted from compound block 1 that is for cover image is passed directly 

to the next adjacent compound block. Whereas the compound block 2 that is for stego image is passed 

to the next adjacent compound block with aggregation of the difference obtained from the 

confrontation block. The compound block 1 has 30 (5*5) kernel, and truncated activation function 

with average pooling. The compound block 2 and 3 has 30(3*3) kernel, and ReLU activation function 

with average pooling. The compound block 4 has 64(3*3) kernel, and ReLU activation function with 

global pooling. Finally the classification module comprises of fully connected neural network with 128 

nodes in first two layers with ReLU activation function. The output layer has two nodes and Softmax 

activation function. Error probability rate of AG-Net for WOW at 0.3 bpp is 22.43%, at 0.4 bpp is 

16.38%, at 0.5 bpp is 14.18%, for S-UNIWARD at 0.3 bpp is 19.34%, at 0.4 bpp is 14.51%, at 0.5 bpp is 

10.73%, and for HILL at 0.3 bpp is 22.04%, at 0.4 bpp is 15.05%, at 0.5 bpp is 15.40%. 

Wu et al.[25] used BOSSbase 1.01 dataset for their proposed CIS-Net. The method comprises 

of CNN along with two novel layer called STL (Single-value truncation layer) and SPL (Sub-Linear 

Pooling Layer). The image is first passed through a High pass Filter of kernel size 20 (5*5) and STL to 

extract large elements of the cover image. After this the extracted feature map is passed to the 

Feature Fusion layer where 28 (3*3) convolutional layers are used with parameterized ReLU and stride 

=1. After this  the feature map is passed to a layer with 56 (3*3) convolutional layers having ReLU as 

activation function and average pooling of kernel size (2*2) and stride=2. The feature maps are the 

passed to a layer with 112 (3*3) convolutional layers having ReLU as activation function and average 

pooling of kernel size (3*3) and stride=2. The feature maps are the passed to a layer with 224 (3*3) 

convolutional layers having ReLU as activation function and SPL of kernel size (3*3) and stride=2. The 

feature maps are the passed to a layer with 448(3*3) convolutional layers having ReLU as activation 

function and SPL of kernel size (64*64) and stride=1. Detection error probability rate of CIS-Net for S-

UNIWARD at 0.1 bpp is 35.28%, at 0.2 bpp is 26.21%, at 0.3 bpp is 19.64%, at 0.4 bpp is 14.62%, at 0.5 

bpp is 10.73%, and for at 0.1 bpp is 36.82%, at 0.2 bpp is 28.83%, at 0.3 bpp is 22.67%, at 0.4 bpp is 

18.10%, at 0.5 bpp is 14.78%. 

 

 

 



2.2.2 COMPARISON 

 

 Payload-bits per pixel(bpp) 
 

0.1 0.2 0.3 0.4 0.5 

Xu-Net 42.67 
  

19.76 
 

Yedrouj-Net 
 

36.7 
 

22.8 
 

GBRAS-Net 
 

26.4 
 

13.9 
 

Zhu-Net(TLU) 
 

31.6 
 

18.8 
 

Zhu-
Net(ReLU) 

 
28.5 

 
15.3 

 

SiaStegNet 27.01 16.71 11.57 8.11 
 

ReST-Net 34.33 28.65 21.22 14.56 12.07 

IAS-CNN 
 

37.6 
 

24.95 
 

AG-Net 
  

19.34 14.51 10.73 

CIS-Net 35.28 26.21 19.64 14.62 10.73 

TABLE-I (DETECTION ERROR PERCENTAGE FOR S-UNIWARD STEGANOGRAPHY FOR DIFFERENT 
STEGANALYSIS NETWORKS) 

 Payload-bits per pixel(bpp) 
 

0.1 0.2 0.3 0.4 0.5 

Xu-Net 58.44   79.24  
GBRAS-Net  31.5  18.1  
ReST-Net 30.83 22.74 17.62 14.03  

SiaStegNet 37.62 29.36 23.26 18.34 15.46 

AG-Net   22.04 18.05 15.4 

CIS-Net 36.28 28.83 22.67 18.1 14.78 

TABLE-II (DETECTION ERROR PERCENTAGE FOR HILL STEGANOGRAPHY FOR DIFFERENT 
STEGANALYSIS NETWORKS) 

 Payload-bits per pixel(bpp)  
0.1 0.2 0.3 0.4 0.5 

Yedrouj-Net 
 

27.8 
 

14.1 
 

GBRAS-Net 
 

19.7 
 

10.2 
 

Zhu-Net(TLU) 
 

25.7 
 

13.8 
 

Zhu-
Net(ReLU) 

 
23.3 

 
11.8 

 

SiaStegNet 23.84 14.43 11.57 8.11 
 

ReST-Net 
     

IAS-CNN 
 

31.85 
 

19.25 
 

AG-Net 
  

22.43 16.38 14.18 

CIS-Net 29.08 21.03 15.96 12.13 9.3 

TABLE-III (DETECTION ERROR PERCENTAGE FOR WOW STEGANOGRAPHY FOR DIFFERENT 
STEGANALYSIS NETWORKS) 

 



 

 

CHAPTER 2.3: PROPOSED METHOD 

 

2.3.1 PROPOSED METHOD 

In the approach we try to apply steganalysis using Convolutional Neural Networks. So, we started with 

implementing one of the methods available to us form the literature survey to get an idea of working 

of CNNs in the defined domain with some modifications. 

The model the was trained with the dataset discussed in section 2.4. The model accepts images of size 

256x256 so after first layer of convolution 30 matrices each of size 128x128 is generated. These 30 

matrices are fed to the maxpooling layer of kernel size 2x2 reducing the size of the matrices to 62x62 

which are again fed to the next convolution layer and so on, and so forth. Finally, 512 features are 

selected and are given as input to the classification layer of the above CNN model. The classification 

layer has 512 input neurons to accept 512 input features. These 512 neurons are densely connected 

to the single hidden layer having 1024 neurons and since the problem is example of binary 

classification the output layer has 2 neurons which again are connected densely to the hidden layer. 

The hidden layer has ReLU as activation function and the output layer has Softmax as activation 

function. 
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Later, we tried with the concept of transfer learning to implement CNN in the field of steganalysis. We 

have selected VGG19 as the network to classify the images into cover and stego images. Even though 

we were implementing transfer learning we had to make a few adjustments in the pre-trained model. 

Since any CNN has 2 components, one is for feature extraction and the other is for classification VGG19 

can also be broken down into these two components. Conventionally VGG19 is used to classify images 

into category of 1000 classes. But our work is of binary classification, so it is quite evident that we 

have to reduce the size of output layer from 1000 to 2. We kept the feature extracting or the 

convolution layer unaltered. 

 

 

 



Since, we have changed the classifier we have to train this classifier part of the CNN by our training 

samples 

 

2.3.2 TRAINING THE CLASSIFIER 

In both the above networks we have trained the neural network with categorical cross-entropy as loss 

function and used stochastic gradient descent as the optimizer with learning rate of 0.001. 

 

2.4 RESULTS AND DISCUSSION 

 

2.4.1 PREPARATION OF DATASET 

We have used the benchmark dataset BOSSbase(Break Our Steganographic System) as our dataset. It 

has 10,000 grayscale images of size 512x512. The dimension of the image is very high for deep learning 

and we were restricted by the computational power. So, we reduced the dimension of the image to 

256x256. These reduced images were categorized as the cover images. After which we exposed the 

images to different steganographic algorithms- WOW, S-UNIWARD, HUGO with different payload 

capacities. We used 0.1, 0.2, 0.3, 0.4, 0.5 as our payload capacities and hence generated 15 sets of 

stego-images. 

 

Cover                              HUGO_0.1                           Difference 

 

Cover                       S-UNIWARD_0.1                      Difference 



 

Cover                             WOW_0.1                           Difference 

 

2.4.2 RESULTS 

Although we have conducted the experiment with extreme care, there may have been some fault in 

designing the architecture of the CNN, faults in the training dataset which resulted in the poor 

performance of the models.  

The results w.r.t. to the first model for classification between cover image and stego images(5000 

images in total) generated using WOW steganographic algorithm with 0.1 payload are given as follows 

in the form of confusion matrix.  

 

As it is evident that model has classified all the test image into a single class, that is, stego image in 

this case. 

Again, the results w.r.t. to the second model for classification between cover image and stego 

images(1232 images in total) generated using WOW steganographic algorithm with 0.1 payload are 

given as follows in the form of confusion matrix.  

 

As it is evident that model has classified all the test image into both classes with a bias to stego class. 

 

2.4.3 DISCUSSION 

We performed this experiment on a system with configuration of Ryzen 7 3700x CPU, GeForce GTX 

1650 Super GPU and 16 GB RAM. The preparation of dataset of 10,000 BOSSbase images into 

steganographic counterparts using WOW, S-UNIWARD and HUGO algorithms with 0.1, 0.2, 0.3, 0.4, 

and 0.5 embedding rates took about 15 minutes for each using CPU. Thus, taking a total time of about 

15 x 15 (225) minutes in total or 3.75 hours. 



We used GPU for training the models. 

For training of the first model stated in section 2.3.1 we used a total 7500 cover images of 256 x 256 

BOSSbase images and their 7500 WOW steganographic counterpart images with 0.1 payload. For 

15000 train images set in total and 20 epoch sessions the model took 5.33 hours to finish training, and 

the results from remaining 5000 test image set the result of the model was not good, as discussed in 

section 2.4.2. 

For training the second model a total 1847 cover images of 256 x 256 BOSSbase images and their 1847 

WOW steganographic counterpart images with 0.1 payload were used. For 3694 train images set in 

total and 40 epoch sessions the model took 1.33 hours to finish training, and the results from 

remaining 1232 test image set the model showed improvement as discussed in section 2.4.2. 

 

CHAPTER 2.5 CODE 

 

2.5.1 FIRST MODEL 
import numpy as np 
import pickle 
import matplotlib.pyplot as plt 
from sklearn.model_selection import train_test_split 
f=open('arro','rb') 
o=pickle.load(f) 
f.close() 
f=open('arr01','rb') 
s25=pickle.load(f) 
f.close() 
l=[] 
for i in o: 
    l.append(i.reshape((1,1,256,256))) 
l=[] 
for i in o: 
    l.append(i.reshape((1,1,256,256))) 
c=[[0] for i in range(10000)] 
for i in range(10000): 
    c.append([1]) 
c=np.array(c) 
train,test=train_test_split(range(20000)) 
trainx=ln[train] 
testx=ln[test] 
trainy=c[train] 
testy=c[test] 
import torch 
import torchvision 
import torchvision.transforms as transforms 
import torch.nn as nn 
import torch.nn.functional as F 
 



class Net(nn.Module): 
    def __init__(self): 
        super().__init__() 
        self.conv1 = nn.Conv2d(1, 30, 5,padding=2,stride=1) 
        self.pool = nn.MaxPool2d(2, 2) 
        self.conv2 = nn.Conv2d(30, 30, 5) 
        self.conv3=nn.Conv2d(30,32,3) 
        self.conv4=nn.Conv2d(32,64,3) 
        self.conv5=nn.Conv2d(64,128,3) 
        self.pool1=nn.AvgPool2d(6,6) 
        self.fc1 = nn.Linear(512, 1024) 
        self.fc2 = nn.Linear(1024,2) 
 
    def forward(self, x): 
         
        x = self.pool(self.conv1(x)) 
        print("first conv",x.shape) 
        x = self.pool(F.relu(self.conv2(x))) 
        print("second conv",x.shape) 
        x = self.pool(F.relu(self.conv3(x))) 
        print("third conv",x.shape) 
        x = self.pool(F.relu(self.conv4(x))) 
        print("fourth conv",x.shape) 
        x = self.pool1(F.relu(self.conv5(x))) 
        print("fifth conv",x.shape) 
        x = torch.flatten(x, 1) # flatten all dimensions except batch 
        print("total output features after convolution",x.shape) 
        x = F.relu(self.fc1(x)) 
        #print(x.shape) 
        x = F.softmax(self.fc2(x)) 
        #print(x) 
        return x 
 
net = Net() 
net=net.double() 
trainx=torch.from_numpy(trainx) 
testx=torch.from_numpy(testx) 
trainy=torch.from_numpy(trainy) 
testy=torch.from_numpy(testy) 
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') 
trainx.to(device) 
trainy.to(device) 
testx.to(device) 
testy.to(device) 
net.to(device) 
print(device) 
import torch.optim as optim 
 
criterion = nn.CrossEntropyLoss() 
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) 
for epoch in range(20):  # loop over the dataset multiple times 



    print("epoch",epoch) 
    running_loss = 0.0 
    for i in range(len(train)): 
        print(i) 
        # get the inputs; data is a list of [inputs, labels] 
        # zero the parameter gradients 
        optimizer.zero_grad() 
        # forward + backward + optimize 
        outputs = net(trainx[i].double().to(device)) 
        loss = criterion(outputs.to(device), trainy[i].long().to(device)) 
        loss.backward() 
        optimizer.step() 
        # print statistics 
        running_loss += loss.item() 
        if i % 2000 == 1999:    # print every 2000 mini-batches 
            print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}') 
            running_loss = 0.0 
print('Finished Training') 
res=[] 
for i in testx: 
    output=net(i.double().to(device)) 
    print(output) 
    res.append(torch.max(output,1).indices) 
res=torch.tensor(res) 
res=res.numpy() 
from sklearn.metrics import confusion_matrix as cf 
m=cf(res,testy) 
m 
 

2.5.1 SECOND MODEL 
import numpy as np 
import pickle 
from sklearn.utils import shuffle 
import matplotlib.pyplot as plt 
from sklearn.model_selection import train_test_split 
f=open('arro','rb') 
o=pickle.load(f) 
f.close() 
f=open('arr01','rb') 
s25=pickle.load(f) 
f.close() 
l=[] 
for i in o[:2463]: 
    i=i/255 
    l.append(i.reshape((1,1,256,256))) 
l=np.array(l) 
x1,y1=train_test_split(l) 
l1=[] 
for i in s25[:2463]: 
    i=i/255 



    l1.append(i.reshape((1,1,256,256))) 
l1=np.array(l1) 
l1.shape 
x2,y2=train_test_split(l1) 
train=np.concatenate((x1,x2),axis=0) 
train.shape 
test=np.concatenate((y1,y2),axis=0) 
c=[0 for i in range(1847)] 
for i in range(1847): 
    c.append(1) 
c=np.array(c) 
trainx,trainy=shuffle(train,c) 
c1=[0 for i in range(len(y1))] 
for i in range(len(y1)): 
    c1.append(1) 
c1=np.array(c1) 
testx,testy=shuffle(test,c1) 
import torch 
from torchvision.models import vgg19 as v 
from torch import nn 
import torchvision 
import torch.nn.functional as F 
trainx=torch.from_numpy(trainx) 
testx=torch.from_numpy(testx) 
trainy=torch.from_numpy(trainy) 
testy=torch.from_numpy(testy) 
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') 
trainx.to(device) 
trainy.to(device) 
testx.to(device) 
testy.to(device) 
print(device) 
class ll(nn.Module): 
    def __init__(self): 
        super().__init__() 
        self.conv1=nn.Conv2d(1,3,1,padding=1,stride=1) 
    def forward(self,x): 
        x=self.conv1(x) 
        return x 
class classifier(nn.Module): 
    def __init__(self): 
        super().__init__() 
        self.fc1 = nn.Linear(25088, 1024) 
        self.fc2=nn.Linear(1024,512) 
        self.fc3 = nn.Linear(512,2) 
    def forward(self,x): 
        x = torch.flatten(x, 1) 
        x = F.relu(self.fc1(x)) 
        x=F.relu(self.fc2(x)) 
        x = F.sigmoid(self.fc3(x)) 
        return x 



cl=classifier()   
m=v(pretrained=True) 
feature=m.features 
feature.eval() 
a=m.avgpool 
ft=ll().float() 
for parameter in feature.parameters(): 
    parameter.requires_grad=False 
feature.to(device) 
a.to(device) 
ft.to(device) 
cl.to(device) 
import torch.optim as optim 
 
criterion = nn.CrossEntropyLoss() 
optimizer = optim.SGD(cl.parameters(), lr=0.001, momentum=0.9) 
for epoch in range(40):  # loop over the dataset multiple times 
    print("epoch",epoch) 
    running_loss = 0.0 
    for i in range(len(train)): 
        # get the inputs; data is a list of [inputs, labels] 
        # zero the parameter gradients 
        optimizer.zero_grad() 
        # forward + backward + optimize 
        outputs = cl(a(feature(ft(trainx[i].float().to(device))))) 
        loss = criterion(outputs,torch.tensor([trainy[i]]).long().to(device)) 
        loss.backward() 
        optimizer.step() 
        # print statistics 
        running_loss += loss.item() 
        if i % 2000 == 1999:    # print every 2000 mini-batches 
            print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}') 
            running_loss = 0.0 
print('Finished Training') 
res=[] 
for i in testx: 
    output=cl(a(feature(ft(i.float().to(device))))) 
    print(output) 
    res.append(torch.max(output,1).indices) 
res=torch.tensor(res) 
res=res.numpy() 
from sklearn.metrics import confusion_matrix as cf  
m=cf(res,testy) 
m 
 
 

CHAPTER 2.6 CONCLUSION 
In this paper we tried extensively to get rid of any separate feature extracting methodologies like 
PCA or Haralick as used in past, and tried to use the full strength of Convolutional Neural Networks 
for feature extraction and classification. But due to some irremovable discrepancy in the designed 
model we achieved worse detection accuracy rates than previous model discussed in section 1.3. 



Thus we proceeded with transfer learning to actively use the parameters of pre-trained model 
VGG19, but although it showed improvement in classifying but the detection accuracy was not 
mention worthy. Thus, the error from our designed model could not be traced. Apart from that, it 
can be observed that to gain advantage of Convolutional Neural Networks we need high 
computational power to effectively reduce training time and perform more epochs and reduce loss, 
which in our case was limited thus giving bad results and efficiency. In future, we aim to trace the 
error in our designed model and perform  
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Abstract: 

As of March 24th, 2020, there were more than 400,000 confirmed instances of the COVID-19 

epidemic, which swept like the wind around the planet. To limit the spread of the virus, severe 

lockdown measures were implemented in India on the same day. Following that, many 

consequences of the lockdown were noticed, and one of the immediate the extent of air pollution 

both internationally and in India. In this study, we saw about 40% of the participants. 

Air quality index (AQI) decline in India during a month of lockdown. The in-depth analyses were done 

for 3 key hotspot locations with >1000 COVID-19 instances as of 1 June 2020, and it demonstrates 

more than 70% of mortality in India that is related. We evaluated how lockout affected various air 

quality levels. 

Using ground monitoring stations, respectively. The greatest decreases were noted in the air 

pollutants NO2 (-48.68 percent), PM2.5 (-34.84 percent), and PM10 (-33.89 percent) postlockdown. 

Additionally, tropospheric NO2 (mol/m2) concentrations were higher than in the metro areas of 

Kolkata, Howrah, and South 24 Pargana. We discovered a considerable improvement in the COVID-

19 mortality with PM10 and AQI pollutant indicators the next time point. The correlation result 

shows that chronically poor air quality may exacerbate the disease's clinical symptoms. 

 

 

Introduction: 

Because of the threat of the virus spreading, until June 2020. The Central Pollution Control 
Board said that as a result of this nationwide lockdown, traffic and industrial activity were 
nearly stopped, which had the positive effect of significantly reducing air pollution levels in 
several Indian cities (Sharma et al., 2020). (CPCB). The air quality index (AQI), which 
incorporates a number of air contaminants, has been widely used as a pollution measure 
throughout the world, including India (Shenfeld, 1970; Ott and Thorn, 1976; Murena, 2004). 
Some important contaminants that are harmful to the respiratory system were not included 
in the early phase (Radojevic and Hassan, 1999; Qian et al., 2004). Indian National Air 
Quality Standards (INAQS) have included a number of Air pollutants such as PM2.5, PM10, 

O3, SO2, NO2, NH3, and CO. India is one of the most polluted nations, and 21 of the world's 30 
most polluted cities, which claim over 12.4 million lives annually, are located in India 
(https://www.iqair.com/us/world-most-polluted-cities). Because there were few human 
activities during the COVID-19 lockdown, environmental contaminants showed a decrease 
at that time but quickly returned to normal levels. In these circumstances, the COVID-19 
lockout helped to improve the global air quality, and it has been noted that many air 
contaminants have decreased. Using ground monitoring stations and remote sensing 
datasets both globally and in India.Various research have examined the impact of COVID-19 
lockdown.On ground air pollution indicators and tropospheric pollution indicators the air 
quality has considerably improved. It's interesting to note that studies have linked air 
pollution to SARS-CoV-2-related fatalities. In this regard, there was a correlation between 
ground and tropospheric pollutant levels (PM and NO2). People who live in polluted areas 



so typically breathe in dangerous pollutants that have been there for a while and are more 
susceptible to them, which weakens the immune system. In this study, we only focused on 
the 3 hotspot regions of India with the highest recorded COVID-19 cases and fatalities. As a 
result, the objective of this study is to evaluate the decline in AQI and other air pollutants at 
the ground monitoring station and, using remote sensing data, to extrapolate changes in 
tropospheric NO2 concentration. Additionally, the study also attempted to determine a 
connection between COVID-19 and air contaminants. 
 

 
 
 
 
Material and methods: 
We used data from more than 2 Indian stations' in situ air quality monitoring to ensure the 
post-lockdown improvements in air pollution.They were AQIs,evaluated on May 2, 2020 to 
30th May 2021 on many days to track the variations. Moreover, specific Studies were 
conducted using ground pollution Indications for South 24 Pargana, Howrah, and Kolkata. 
The criterion for choosing these significant locations is that we only took into account those 
where there were more than 1000 occurrences as of June 1, 2020. (Table 1). The Central 
Pollution Control Board (CPCB) portal (https://cpcb.nic.in/) was used to obtain monthly 
average data for the aforementioned locations for the pre-lockdown (February 25th, 2020 
and March 24th, 2020) and post-lockdown periods. The statistical analysis used the Air 
Quality Index (AQI) and other pollutants, including PM2.5, PM10, NO2, SO2, and O3 (units in 
μg/m3). Additionally, correlation and linear regression studies between various air 
pollutants and COVID-19 mortalities were carried out using data from several Ministry of 
Health & Family Welfare portals (https://www.mygov.in/covid-19 & 
https://www.mohfw.gov.in). A comparable experiment was carried out to evaluate the 
fluctuations in the relationship between these variables two weeks (as of June 15, 2020) 
after the updated COVID-19 mortalities . 

 

 



 
 
Results and discussion: 

Air pollution levels and reduction due to COVID-19 lockdown 
India was placed under three weeks of lockdown beginning at midnight on March 24, 2020. 
Following the lockdown, the nation saw a stunning drop in AQI of about 36.10 percent on 
March 25, 2020, compared to February 25, 2020, according to our statistical analysis of data 
from the air quality monitoring stations. Investigations indicate a significant decrease in 
India's overall AQI. The greatest and minimum AQI numbers are clear and show India's 
progress through time (before to, during, and after the lockdown days). Investigations show 
that India's overall AQI has significantly decreased. The highest and lowest AQI values can 
be seen, and they show the evolution of India's air quality over time (before to, during, and 
after the lockdown) . Prior to a month of lockdown, the average air quality index (AQI) was 
128, but it fell to 89 on the first day of the lockout and then further to 72 after the 
lockdown. This ongoing decrease in AQI shows unequivocally that the COVID-19 lockdown 
has had a significant positive impact on India's air pollution. According to various air 
pollution indicators, such as PM2.5, PM10, NO2, O3, SO2 (units in g/m3), and AQI, as well as 
shutdown dates (before and after). When compared to March 2020, we discovered that all 
air pollutant concentrations fell sharply in April (the postlockdown period) (pre-lockdown). 
Some cities had PM2.5 values of over 100 g/m3, while others were the top cities for PM10 
(most of them had concentrations of over 110 g/m3) prior to the lockdown period. The main 
cause of the high level of PM concentrations in these areas is the increased traffic and 
industrial burdens. 
Similar trends were observed for NO2 levels, where these pollutants were recorded higher 
at some stations while SO2 concentration was greater at some cities in a pre-lockdown 
phase that had been greatly reduced. It's interesting to note that following lockdown, the 
O3 level increased. Few cities have seen a partial increase in the O3 level. All of the cities' 
AQI values have seen a significant reduction, but Howrah, Kolkata and South 24 Pargana 
were the worst offenders. The average AQI decreased as a result of the changes (positive 
and negative percentages) in various air contaminants being calculated. In the cities under 
consideration, -31.59 percent. NO2 had the biggest average reduction (-48.68) when 
compared to other contaminants. Similar decreasing tendencies were also seen.Detected in 
SO2 (37.76%), PM2.5 (34.84%), PM10 (33.89%), and O3 air pollution indicators (9.06%). The 
findings demonstrate that the NO2 levels have declined more some cities 74 percent, 68 
percent, and 77 percent, respectively, voted to impose lockdown. These towns are 
renowned for having higher traffic volumes and less dense road systems.The weight of NO2 
levels will increase. A similar decrease trend is seen in PM2.5 and PM10 particulate particles 
with less fluctuation. 
Organic aerosols and motor vehicle traffic, which are entirely anthropogenically caused 
activities that ceased due to lockdown, are the main sources of PM2.5. Construction sites, 
burning activities, industrial sources, and dust factors, which increase the cities 
susceptibility to PM10 air pollution, are heavily regulated sources of PM10. 
But greater decreases during lockdown were observed in Some stations. In comparison to 
the other pollutants, the SO2 pollutants that have experienced significant change following 
the lockup and the reduction have been given a high ranking. The majority of the decline is 



seen the other cities, and the main factor that has caused this is industrial activity that 
processes sulfur-containing minerals. The results of this study are more or less consistent 
with those of prior studies that compared different ground-level pollutants before and after 
short-term lockdowns lasting a week or month in Kolkata,Howrah,South 24 Pargana metro 
areas. 
To further observe the temporal change, the tropospheric NO2 (mol/m2) pollutant 
concentrations were also mapped. 
 

Relationship of air pollutants and COVID-19 mortalities: 
Determining the link between COVID-19 mortality and air pollution is crucial since people 
have been inhaling these deadly chemicals and dying for decades. In this regard, our linear 
regression results using PM2.5,NO2 and PM10 pollutant indicators reveal satisfactorily 
favourable associations .The study found encouraging correlations between COVID-19 

fatalities and PM10 (R2 = 0.4253; (R) equals 0.6521, p = 1.11e-16), and PM2.5(R2 

=  0.4192; (R) equals 0.6474., p = 2.22e-16) NO2(R2 =   0.5238; (R) equals 0.7237., p 

=  0). The NO2 pollutant at the ground had an insignificant relationship. 

 
 
 
whereas high concentrations of tropospheric NO2 (mol/m2). The fact that the COVID-19 
mortality are higher in these areas compared to the other analysed locations suggests that it 
is a contributing factor. However, if less sensitive COVID-19 locations were associated with 
areas with superior air quality, we could strengthen this link. It's interesting to see that 
there are still very few correlations with other air contaminants. Qin et al. (2020), who 
noted that people living in areas with low air quality are making a similar attempt, also 
emphasised extremely susceptible to COVID-19 as a result of persistent exposure to 
poisonous pollutants. Cole et al(2020) .'s other research examined exposure to ongoing air 



pollution in 355 Dutch towns and discovered favourable correlation between COVID-19 and 
PM2.5, NO2, and SO2 pollutants instances and fatalities where PM2.5 was significantly 
linked with the contaminants. The other study discovered that a slight increase in Long-term 
PM2.5 exposure is not beneficial, as their model results showed that an increase in PM2.5 of 
1 g/m3 results in an increase of 8% in the COVID-19 fatality.So is the exposure to NO2 which 
has a strong relationship with the mortality rate. 
 

 
Conclusion: 
This study looks into how lockout affects air quality that improved dramatically, and key 
COVID-19-vulnerable locations in India were the subject of a thorough analysis. Our findings 
show that higher NO2, PM10, and PM2.5 (g/m3) pollution levels decreased.With rates of 
48.68%, 34.84%, and 33.89% in 3 major cities, respectively COVID-19 risky locations. Aside 
from that, tropospheric NO2 (mol/m2) amounts also fell,Areas where there is a 
concentration include Kolkata,Howrah and South 24 Pargana.Before imposing lockdown, 
pollution was high. We created the connection on two separate temporal datasets, 
comparing COVID-19 fatalities with Various air contaminants were measured, and 
satisfactory positive associations were found. using PM10 and AQI measurements. 
Curiously, we observed improvement in a when re-correlated with up-to-date COVID-19 
mortalities data. There have been numerous attempts of this nature around the world.In 
which our findings are highly supported (Wu et al., 2020; Chen et al., 2020;As of 2020, Naqvi 
et al. SARS-CoV-2 is a contagious illness, though.However, those who are frail and live in 
areas with poor air quality Immune systems are weak, and some diseases carry higher 
risks.And in particular are dealing with the coronavirus pandemic anxieties. 
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Abstract 
 
 
The goal of document classification is to give a certain document the best 
possible label. Insufficient label information and an unstructured sparse 
format are the fundamental problems with document classification. The 
former issue might be effectively solved by a semi-supervised learning 
(SSL) technique, whereas the latter issue might be solved by considering 
various document representation schemes. Co-training is a well-liked 
semi-supervised learning (SSL) technique that tries to take advantage of 
different viewpoints in terms of feature subsets for the same example. 
 
In this project, we suggest semi-supervised learning for enhancing 
document categorization performance. We transform a document using 
three document representation techniques to broaden the variety of 
feature sets for classification: topic distribution based on latent Dirichlet 
allocation (LDA), term frequency-inverse document frequency (TF-IDF) 
based on the bag-of-words scheme, and neural network-based document 
embedding known as document to vector (Doc2Vec). We show 
effectiveness of our algorithm on a dataset prepared by ourselves. 
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Introduction 
 

The amount of online text documents that are accessible via digital 
libraries, news sources, and corporate intranets has grown significantly. 
These documents, along with other unstructured data, are expected to 
overtake other online data types as the most common ones. An essential 
activity that can aid individuals in finding information on these massive 
databases is automatic text categorization, which is the task of allocating 
text documents to pre-specified classes (topics or themes) of documents. 
There is no such automated, systematic method for classifying documents 
that can be used to simultaneously update the classification model and 
give class labels to a large number of documents. 

Labelling documents requires a lot of human labour, takes a long time, 
and is not cost-effective. Additionally, since a document is a list of words 
with a variable length, it should be converted into a numerical vector with 
a fixed size for further analysis. Although there are some methods 
available by which we can represent the text information into numerical 
values such as term and inverse term frequency (TF-IDF), one hot 
encoding, count victimizer etc. For all text analytics tasks, no document 
representation option outperforms the others. One of the key functions of 
text mining is document classification, which is employed in processes like 
sentiment analysis and spam filtering. Inadequate label information and a 
lack of an ideal representation approach are the two fundamental 
obstacles to document classification. In many applications that deal with 
organising, classifying, finding, and succinctly presenting a sizable 
amount of information, document classification plays a crucial role. A long-
standing and thoroughly researched issue in information retrieval is 
document classification. 

Document classification can be divided into three categories: These are 
Supervised document classification, Unsupervised document 
classification, and Semi-supervised document classification. In 
Supervised document classification, some mechanism external to the 
classification model (generally human) provides information related to the 
correct document classification. In Unsupervised document classification, 
no information is provided by any external mechanism whatsoever. In 
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case of Semi-supervised document classification parts of the documents 
are labelled by an external mechanism. There are two main factors which 
make document classification a challenging task: (i) feature extraction; (ii) 
topic ambiguity. First, Feature extraction 

Deals with taking out the right set of features that accurately describe the 
characteristics of a document and helps in building a good classification 
model. Second, many broad topic documents themselves are so 
complicated that it becomes difficult to put them into any specific category. 

In this project we propose our model on the basis of semi supervised 
learning. Here we use our own dataset containing 4450 rows and 9 
columns. First, we remove the stop words. Then we apply Stemming and 
Lemmatization to normalise the words into their root form. These are the 
pre-processing. Then we train our LDA (Latent Dirichlet allocation) model 
and as an output we get the desired classes of the document. 
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Background 
 
In information science or computer science, document categorization or 
classification is a challenge. We classify or categorise a document into 
one or more groups. Either manually or with the aid of some algorithms, 
this can be done. 
While algorithmic classification is employed in information and computer 
science, manual classification—also known as intellectual 
categorization—has been used mostly in library science. There is 
multidisciplinary study on document classification since issues that are 
resolved utilising both categories are distinct but nevertheless overlap. 
Types of Document Classification and Techniques: 

● Supervised Document Classification 

● Unsupervised Document Classification 

 
Supervised Document Classification: 
 
In supervised classification, the classification of documents is correctly 
determined by an external process (such as human feedback). 
Data set required for supervised document classification: 
Labelled dataset. 
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Unsupervised Document Classification: 
 
Unsupervised document classification, also known as document 
clustering, requires classification to be carried out totally without using 
outside data. Descriptor extraction and use are involved in document 
clustering. Word groups known as descriptors are used to characterise 
the contents of a cluster. In general, document clustering is viewed as a 
centralised process. Web document clustering for users of search engines 
is an example of document clustering. 
Data set required for unsupervised document classification: 
Unlabelled dataset. 
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Related Works: 
 
 

Centroid-Based Document Classification (Eui-Hong (Sam) Han and 
George Karypis):[1] 
 

• Dataset: fromWest Group, TREC-5, TREC-6, and TREC-7 
collections, Reuters-21578 text categorization, test collection 
Distribution 1.0, OHSUMEDcollection, and theWebACE project 
(WAP). 

 
• Model: Documents are represented using a vector space model. 

The cosine function is used in the vector-space model to calculate 
how similar two documents, di and dj, are to one another. The idea 
behind this model is to compute centroid vectors for each set of 
documents belonging to the same class. The learning-phase 
computational complexity of centroid-based classifiers is linear on 
the number of documents and number of terms in the training set. 
Here the time required to classify a document is O(km) where k is 
the no. of centroids and m is the no. of terms in that document. Here 
the performance is calculated by comparing with Naïve Bayes’ 

classifier, C4.5 and K-nearest neighbour classifier. 
 

• Results: 
 

We can see that the centroid-based scheme outperforms the others 
in 17, and the Naïve Bayes’ in 5 out of 23 data sets. 
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Multi-co-training for document classification using various 
document representations (Donghwa kim, Deokseong Seo, Suhyoun 
Cho and Pilsung Kang):[2] 

 

• Dataset: Reuters-21578, 20 Newsgroup, Ohsumed, Reuters-50-50 
and SemEval. 

 

• Model: Three document representation methods are used- LDA, TF-
IDF and Doc2Vec. After completing the document representation, 
the 3 classifiers are trained using the specified features based on 
labelled examples, and compute the confidence levels for their 
predictions. Here we also use the MCT (multi co training). The 
foundation of co-training is the idea that the entire feature set can 
be split into two mutually exclusive sets in the data space. It takes 
input as a vectorized document and gives the document label, the 
document represented as a latent variable. Two types of 
performance measuring parameters are used, that is, for SemEval 
dataset the average F1 score for positive and negative classes and 
for the other dataset the break-even point of precision and recall of 
each class. 

 

• Result: For both NB and RF, for all the class label ratios the 
proposed MCT achieved the highest classification performance. 
 
 

Document Classification by Topic Labelling (Swapnil Hingmire, 
Sandeep Chougule and Girish K. Palshikar): [3] 

 

• Dataset: Three real world text classification datasets are used to 
evaluate the effectiveness of the model. These are 20Newsgroup, 
SRAA: Simulated/Real/Aviation/Auto UseNet data and WebKB. 



11 | P a g e  
 

 
• Model: In this paper a Latent Dirichlet Allocation (LDA) and an 

extension of the algorithm based on the combination of EM 
algorithm and Naïve Bayes classifier (Classify LDA-EM) is produced 
for document classification in which labelled datasets are not 
required. For the improvement of the parameters of the naïve Bayes’ 

parameters, the relation between word co-occurrence knowledge 
and class label along with the EM iterations is used. Initially the 
corpus’ all the unlabelled documents are labelled using the 

ClassifyLDA algorithm and using these labelled documents naïve 
Bayes are built to estimate the class probabilities for each 
document. Then using these estimated class probabilities, we 
assign new class labels and a new naïve Bayes classifier is built. 
The process iterates and continues until the naïve Bayes classifier 
converges into a stable classifier. 
 

• Result: The ClassifyLDA-EM model achieves a very similar 
performance with the NB-EM model. The ClassifyLDA-EM model is 
better than ClassifyLDA and has a performance of 0.9 above for 
most of the datasets. The combination of naïve Bayes and EM 
reduces the effect of noisy labelled documents. 

. 

Document Classification with Distributions of Word Vectors (Chao 
Xing, Dong Wang, Xuewei Zhang, Chao Liu): [4] 

 

• Dataset: The used text database is published by sohu research 
center which involves 9 classes of web documents, including 
Chinese articles in the area of automobile, IT, finance, health, 
sports, tour, education, recruitment, culture and military. From the 
records 14301 documents were for training purpose, and the rest 
1809 documents for test. 
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• Method: Two proposed methods are the CSGMM model and the 
SSA model. In CSGMM the word vectors of a document class follow 
a Gaussian mixture distribution and can be modelled by a class-
specific GMM. 1st some unrecognised characters are removed from 
the document and then by SCWS word segmentation tool they are 
segmented into words. The skip-gram W2V model and produce 
word vectors are trained by the word2vec tool, and another tool is 
used in training of LDA. The 1st experiment is the average pooling 
approach where we use different classifiers. The W2V-based 
approach outperforms the LDA-based approach 

 

• Result: The CSGMM approach is less effective than the W2V 
baseline. The SSA model outperforms the W2V pooling approach 
and implies that the distribution of word vectors is a very good 
representation for documents. 
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Dataset Used: 
 
In our project we use our own dataset having 4450 rows and 9 columns 
names cites, authors, title, year, source, publisher, type, abstract, labelled 
data. 
As a primary input, we feed title and abstract to classify the document 
according to the type of the document. 
 

Screenshot of dataset - 
 

 
 
 

Dataset Link: 
 
https://drive.google.com/file/d/1a_OS_JTJlPXm4D04UstLLPSF5ewdY4F
H/view?usp=sharing 
 
  

https://drive.google.com/file/d/1a_OS_JTJlPXm4D04UstLLPSF5ewdY4FH/view?usp=sharing
https://drive.google.com/file/d/1a_OS_JTJlPXm4D04UstLLPSF5ewdY4FH/view?usp=sharing
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Pre-processing of dataset: 
 

● Data cleaning: 
After taking the CSV file as input first of all we clean the null values 
and invalid rows. With this data frame we further process. 
 

● Removing Stop Words and Punctuation: 

Some tokens are less important than others. For instance, common 
words such as “the” might not be very helpful for revealing the 
essential characteristics of a text. So usually it is a good idea to 
eliminate stop words and punctuation marks before doing further 
analysis. 
We here use a customised stop word list. With the standard stop 
word, we use some most commonly appearing words in all the 
documents. 
 

● Stemming and Lemmatization: 

Different tokens might carry out similar information (e.g. tokenization 
and tokenizing). And you can avoid calculating similar information 
repeatedly by reducing all tokens to its base form using various 
stemming and lemmatization dictionaries. 
 

● Computing term frequencies or tf-idf: 

After pre-processing the text data, you can then proceed to generate 
features. For document clustering, one of the most common ways 
to generate features for a document is to calculate the term 
frequencies of all its tokens. Although not perfect, these frequencies 
can usually provide some clues about the topic of the document. 

 
• Count Vectorization: 

 Count Vectorization involves counting the number of occurrences 
 each word appears in a document (i.e distinct text such as an 
 article, book, even a paragraph!). Python’s Sci-kit learn library has 
 a tool called CountVectorizer to accomplish this. 
 Example sentence: “The weather was wonderful today and I went 

 outside to enjoy the beautiful and sunny weather.” You can tell 



15 | P a g e  
 

 from the output below that the words “the”, “weather”, “and “and” 

 appeared twice while other words appeared once. That is what 
 Count Vectorization accomplishes. 
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Proposed Method: 
 
 

 
 

After pre-processing the dataset, we train our LDA (Latent Dirichlet 
allocation) model with the clean dataset. LDA is an unsupervised 
generative probabilistic model for collections of discrete data such as text 
documents. In LDA, each document is generated by choosing a 
distribution over topics and then choosing each word in the document from 
a topic selected according to the distribution. 
Our algorithm is based on generative property of LDA. Let us assume, we 
want to classify each document to one of the class labels from C = {1, 2, 
..., m}. Using LDA, Z = {z1, z2, ..., zT} topics are learnt on the document 
corpus D. Now an expert will assign a class label, i ∈ C to each topic zt ∈ 
Z based on its most prominent word. 
 
As we told before our model is semi supervised learning based, after pass 
term document matrix as input of LDA model we get some classes and 
the keyword of the classes by which they are been grouped. Then we 
match the keyword with our dictionary and labelled the class. Thus, our 
model works. 
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Figure 2: Concept of LDA 

 

The concept of LDA is presented in Figure 2. LDA has two main steps: 
topic distribution per document and word distribution per topic. First, 
based on the Dirichlet distribution with super parameter of α, the 

probability of the topic in the document is derived. Then, based on the 
Dirichlet distribution with super parameter of β, the probability of the 

word in the topic is derived. A common approach, Gibbs sampling, is 
implemented for approximate inference. In Figure 2 α is the parameter of 

the Dirichlet prior on the per-document topic distributions; β is the 

parameter of the Dirichlet prior on the per-topic word distribution. The 
perplexity (P) approach is used to determine the topic number K. An 
appropriate probability distribution has a relatively low perplexity. The 
perplexity (P) can be calculated by Eq.: 

 
where Nd earns word frequency in the d document. Wd,i  earns the nth 
word in the d document. 
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Document Classification Using Python: 

 

One of the most crucial jobs in natural language processing is text 
classification. It is the process of categorising text strings or documents 
according to the contents of the strings into several categories. 
 
Document classification has several uses, including automatically library 
management system, sentiment analysis, recharge paper labelling etc, 
 
Here, python will be used to analyse the problem in this case. Some 
libraries of python are used in Machine Learning and data analysis to 
solve the problem. 
Following are the steps required to create a document classification model 
in Python: 
 

● Importing Libraries 
● Importing The dataset 
● Text Pre-processing 
● Converting Text to Numbers 
● Training and Test Sets 
● Training document Classification Model and Predicting class of 

document as well as group the document. 
● Evaluating the Model 
● Saving and Loading the Model 

 
 
 

➔ Importing Libraries: 
 
import pandas as pd 
import numpy as np 
import nltk 
import string 
from sklearn.feature_extraction.text import CountVectorizer 
from sklearn.feature_extraction import text 
from sklearn.decomposition import LatentDirichletAllocation 
from gensim import corpora 
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from nltk.corpus import stopwords 
from nltk.stem.wordnet import WordNetLemmatizer 
from gensim.models import Word2Vec 

 
 

➔ Importing The dataset 
 
data = pd.read_csv("./test.csv") 
print(data.shape) 

 

➔ Text Pre-processing 
 
data_without_null_value = data['Abstract'].dropna() 
print(data_without_null_value.shape) 
new_stop_word = ['techniques', 'review', 'survey', 
'approach','introduction', 
'based','program','method','application','paper', 'development', 
'computer', 'field', 'technology', 'research', 'human','tool', 'problem', 
'algorithm', 'use','unit', 'device', 'invention', 'present', 'system','new', 
'analysis','book','input','overview','model','ha','used','use','using','first
','wa','study', 'statistic', 'tool', 'method', 'analytics','focus', 'need', 
'statistic', 'tool', 'method','part', 'chapter', 'area', 'medical', 'section', 
'application', 'embodiment'] 
new_stop_word_test = 
['image','processing','artifitial','intelligence','cloud','computing','mach
ine','learning'] 
my_stop_word = nltk.corpus.stopwords.words('english') 
my_stop_word.extend(new_stop_word) 
print(new_stop_word) 
list1 = data_without_null_value.tolist() 
stop = set(new_stop_word_test) 
print(stop) 
exclude = set(string.punctuation) 
lemma = WordNetLemmatizer() 
def clean(doc): 
stop_free = " ".join([i for i in doc.lower().split() if i in stop]) 
punc_free = ''.join(ch for ch in stop_free if ch not in exclude) 
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normalized = " ".join(lemma.lemmatize(word) for word in 
punc_free.split()) 
return normalized 
 
clean_corpus = [clean(doc).split() for doc in list1] 
df_list = [] 
for ele in clean_corpus: 
str = "" 
for word in ele: 
str+=word+" " 
df_list.append(str) 
 
df = pd.DataFrame(df_list,columns =['final_column']) 

 
 

➔ Training document Classification Model and Predicting class of 
document as well as group the document 
 
cv = CountVectorizer(max_df=0.95,min_df=2) 
newdata = cv.fit_transform(df["final_column"].values.astype('U')) 
newdata.shape 
lda = LatentDirichletAllocation(n_components=5,random_state=50) 
lda.fit(newdata) 
 

 

➔ Evaluating the Model 
 
single_topic=lda.components_[0] 
single_topic.argsort() 
for index,topic in enumerate(lda.components_): 
print(f'Top word for topic: {index}') 
print([cv.get_feature_names()[i] for i in topic.argsort()[-10:]]) 
print("\n") 
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Experiment and result: 
 

Top word for topic: Image Processing 
['learning', 'computing', 'machine', 'processing', 'image'] 
 
 
Top word for topic: Artificial Intelligence 
[' artificial ', 'processing', 'computing', 'intelligence', 'learning'] 
 
 
Top word for topic: Data Science 
['database’, 'computing', 'science', ' processing', 'analysis'] 
 
 
Top word for topic: Machine Learning 
['intelligence', 'machine', 'learning', 'processing', 'machine'] 
 
 
Top word for topic: Cloud Computing 
['cloud', 'computing', 'intelligence', 'learning', 'networking'] 
 
 
 

By following this method, we expect better accurate result than the 
algorithm available on the internet. 
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Conclusion: 
 
In this project we propose a novel, inexpensive document classification 
algorithm based on semi supervised learning. Here we used LDA model 
to classify the documents into different classes. We showed that it has 
several advantages over supervised and unsupervised learning 
technique. Our approach is well suited for the domains where mapping 
establishment is easier between topics and class labels. 
However, it has certain limitations which guide us in further research 
directions. In future we would like to experiment our model with other well-
known datasets and improve our model by exploring other branches and 
method of text mining and Natural Language Processing. 
 
  



23 | P a g e  
 

References:  
 

1. Centroid-Based Document Classification (Eui-Hong (Sam) Han and George 
Karypis). 

2. Multi-co-training for document classification using various document 
representations (Donghwa kim, Deokseong Seo, Suhyoun Cho and Pilsung 
Kang). 

3. Document Classification by Topic Labelling (Swapnil Hingmire, Sandeep 
Chougule and Girish K. Palshikar). 

4. Document Classification with Distributions of Word Vectors (Chao Xing, Dong 
Wang, Xuewei Zhang, Chao Liu). 

5. Latent Dirichlet allocation: Wikipedia 
6. Text classification method based on Self-Training and LDA topic models (Miha 

Pavlinek, Vili Podgorelec) 
7. D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. The Journal of 

Machine Learning Research, 3:993{1022, March 2003. 
8. A. Chanen and J. Patrick. Measuring Correlation Between Linguists’ Judgments 

and Latent Dirichlet Allocation Topics. Proceedings of the Australasian 
Language Technology Workshop, pages 13–20, 2007. 



Ramakrishna Mission Residential College (Autonomous)
Vivekananda Centre for Research

Ramakrishna Mission Ashrama
(A Branch Ceffre of Ramakrishna Mission, Belur Math, Howrah-711202)

Narendrapur, Kolkata - 700 103, West Bengal, India
A Scientific Industrial Research Organisation, Recognised by DST, Govt. oflndia

College with Potential for Excellence (CPE), Re-accredited by NAAC - 'A' (CGPA 3.56 our of 4)

Project Completion Certi*i*ate

ilute : l0 {l(} :1i::

T'iris is 1o certiil,'that Sri Ar1'a Panja (i{Oi.l- N{i: LlSLlCl245il{}i a

student of llepaltment of Computer Scieuce. Itamakrishna Mission

Ilesiile*tial Coliege(A*t*nomr:us), has undergorls a Project rvork lrr:i'rr
.lanuirrl,' )1.2022 t* NIay 31" :012 titied "l!{ovie Recommenriati*n

SYsten:".

f*,r*fu2-
Dr. Siddl.rar"ll:ii Llat:er.j*e

(t-learl ol' Lirt: Departnrent)
Depafiruent ol' Com;:uter Science

Haad
Department af Cornputer Scionce

R. K. Mission Resiiential College (Autonomous)
Neiendrapur, Kolkaia - 700 103

PHONES :21772201(3lines), 24772205 FAX : 033-24773597 EMAIL : rkmcnpur@vsnl.com
WEBSITE : www.rkmcnorendropur.org



Ramakrishna Mission Residential
College[Autonomous], Narendrapur

Department of Computer Science

Topic: Movie Recommendation System

BY

NAME: AYUSH NANDI

ROLL NUMBER: CSUG/028/19

REGISTRATION NUMBER: A03-1112-0028-19

UNDER THE GUIDANCE OF PROFESSOR SURAJIT GIRI

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE IN PARTIAL
FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF BACHELOR OF

SCIENCE (B.SC.) HONOURS.

1



CERTIFICATE OF AUTHENTICATED WORK

This is to certify that the project report entitled “Movie Recommendation System” was submitted
to the Department of Computer Science, RAMAKRISHNA MISSION RESIDENTIAL
COLLEGE(AUTONOMOUS), NARENDRAPUR in partial fulfilment of the requirements for the
degree of BACHELOR OF SCIENCE (B.Sc.) HONOURS is an original work carried out by
Ayush Nandi[A03-1112-0028-19] under the guidance of Prof. Surajit Giri. The matter embodied
in this project is authentic and is genuine work done by the student and has not been submitted
whether to this college or to any other institute for the fulfilment of the requirement of any course
of study.

I affirm that I have identified all my sources and that no part of my dissertation paper uses
unacknowledged materials.

Ayush Nandi
Date: 02.07.2022

2



ROLES AND RESPONSIBILITIES FORM

Name of the project: Movie Recommendation System
Date: 02.07.2022

Name Roles and Responsibilities

Arya Panja Model Building, Webapp, Documentation

Ayush Nandi Data Cleaning, Model Building,  System
Testing, Documentation

3



ACKNOWLEDGEMENT

We would like to express our deep and sincere gratitude to our Project Guide, Prof. Surajit Giri
and our HOD Dr. Siddhartha Banerjee for his invaluable guidance throughout this project. It was a
great privilege and honour to work and study under his guidance. The completion of this project
gave us much pleasure and motivated us to have a deeper understanding of the subject.

In addition, we thank our classmates and faculty for their vital suggestions which helped us bring
about numerous improvements in the project. We express our heartfelt gratitude to all the people
supporting us throughout the project either directly or indirectly which immensely contributed to
the evolution of the ideas involved in the project.

4



ABSTRACT

There is already enough content available on the movie recommendation system. Showing the
movie recommendations is essential so that the user need not waste a lot of time searching for the
content which he/she might like. Thus, movie recommendation system plays a vital role to get
user personalized movie recommendations. After searching a lot on the internet and referring to a
lot of research papers, we got to know that the recommendations made using Content-based
Filtering are using a single text to vector conversion technique and a
single technique to find the similarity between the vectors. In this research work, we have used
multiple text to vector conversion techniques and manipulated the results of the multiple
algorithms to get the final recommendation list. You can think of it as a hybrid approach using the
Content-based Filtering technique only.

Keyword: - Movie Recommendations, Content-based Filtering, Text to vector, Cosine similarity.
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1.  INTRODUCTION

Background:

Due to abundance of information collected till 21st century and the increasing rate of information
flowing over the internet, there is a lot of confusion related to what to consume and what not to
consume. Even on YouTube, when you want to watch a video of a particular concept, generally,
there are a lot of videos available out there for you. Now, since the results are ranked
appropriately, there may not be much issue but what if the results were not ranked appropriately?
Well, in that case, we would probably spend a lot of time to find the best possible video which
suits us and satisfies our need. This recommendation results are when you search something on a
website. Next time, when you visit a particular website, without even searching, sometimes the
system is able to show you recommendations which you might like. Isn’t this an interesting
feature? So, basically, the job of a recommender system is to suggest the most relevant items to the
user. Recommendation systems are used in YouTube for video recommendation, Amazon and
Flipkart for product recommendation, Netflix and Amazon Prime for movie recommendation, and
so on. Whatever you do on such websites, there is a system which see your behaviour and then
ultimately suggest things / items with which you are highly likely to engage. This research paper
deals with movie recommendations and logic behind movie recommendation system, traditional
movie recommendation systems, issues related to traditional movie recommendation systems, and
a proposed solution for Artificial Intelligence based personalized movie recommendation system.
A lot of famous movie recommendation related datasets are already available on Kaggle and other
websites. Some of the famous datasets include Movie lens dataset, TMDB Movie Dataset, and the
dataset by Netflix itself. Websites like Netflix, Amazon Prime, etc. use movie recommendation to
increase their revenue or profits by ultimately improving the user experience. In fact, there was a
competition conducted by Netflix in the year 2009 with a prize money of nearly 1 million dollars
($1M) for making at least 10% improvement in the existing system.

As dealt earlier, we have a lot of data available at our exposure and we need to filter the data in
order to consume it because generally we are not interested in each and everything available to us.
In order to filter the data, we need some filtering techniques. There are different types of filtering
techniques or movie recommendation algorithms over which a recommendation system can be
based upon.

Major filtering techniques or movie recommendation algorithms are as follows:

1. Content Based Filtering

2. Collaborative Filtering

3. Hybrid Filtering
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Objective:

To build a recommendation system that will provide a mechanism to assist users in classifying
movies with similar content on the basis of genre, cast, crew etc.

Purpose:

People are often confronted with very large amounts of data, for instance through the internet in an
information society. We are asked to make choices that are almost impossible to make without
additional information or guidance. Recommender systems can provide such guidance by assisting
the user in the decision-making process or by making the decision for the user. These systems use
the enormous amount of available data in a way that users never can. Movie recommendation in
portable environment is significantly important for users. A movie recommender has proven to be
a powerful tool on providing useful movie suggestions for users. The content-based engine
recommends personalized content based on certain predefined parameters. These non-exhaustively
include a user’s watch history, search history, and the items (movies, TV shows) that are currently
being viewed. With rapidly increasing content, recommendation systems turn out as one of the
prominent methods to deliver ‘actual value’ to a customer - by being a scalable method to
personalize content for them. Instead of reading long reviews which turn out to be a decisive
factor for many users, movies of similar content are suggested to the users.

Scope:

The number of choices for anything on internet is very high and it’s tedious to refine most wanted
data by self while searching. The scope of this proposal system includes working within numerous
data, with ease. Many people have problem selecting the alternative item of movie due to lack of
time and due to search issues. Also, movie recommendations from friends can be time consuming.
The system helps in saving lots of time. Many mobile phone and limited processing power
computers can’t handle recommender system due to its extremely large dataset. The solution opted
for this can be use of web services. The proposed system uses web services, thus makes process
simpler.

Applicability:

This recommender system can be applied to any platforms that streams movies.
It can also be used by users to search for similar movies with respect to a particular movie. This
not only saves time and effort but also gives the users more convenient experience.

Achievements:
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2. LITERATURE REVIEW

Sang-Min Choi, et. al. [1] mentioned about the shortcomings of collaborative filtering approach
like sparsity problem or the cold-start problem. In order to avoid this issue, the authors have
proposed a solution to use category information. The authors have proposed a movie
recommendation system which is based on genre correlations. The authors stated that the category
information is present for the newly created content. Thus, even if the new content does not have
enough ratings or enough views, still it can pop up in the recommendations list with the help of
category or genre information. The proposed solution is unbiased over the highly rated most
watched content and new content which is not watched a lot. Hence, even a new movie can be
recommended by the recommendation system.

George Lekakos, et. al. [2] proposed a solution of movie recommendation using hybrid approach.
The authors stated that Content based filtering and Collaborative filtering have their own
shortcomings are can be used in a specific situation. Hence, the authors have come up with a
hybrid approach which takes into consideration both content-based filtering as well as
collaborative filtering. The solution is implemented in 'MoRe' which is a movie recommendation
system. For the sake of pure collaborative filtering, Pearson correlation coefficient has not been
used. Instead, a new formula has been used. But this formula has an issue of 'divide by zero' error.
This error occurs when the users have given same rating to the movies. Hence, the authors have
ignored such users. In case of pure content-based recommendation system, the authors have used
cosine similarity by taking into consideration movie writers, cast, directors, producers and the
movie genre. The authors have implemented a hybrid recommendation method by using 2
variations - 'substitute' and 'switching'. Both of these approaches show results based on
collaborative filtering and show recommendations based on content-based filtering when a certain
criterion is met. Hence, the authors use collaborative filtering technique as their main approach.

Debashis Das, et. al. [3] wrote about the different types of recommendation systems and their
general information. This was a survey paper on recommendation systems. The authors mentioned
about Personalized recommendation systems as well as non-personalized systems. User based
collaborative filtering and item-based collaborative filtering was explained with a very good
example. The authors have also mentioned about the merits and demerits of different
recommendation systems.

Jiang Zhang, et. al. [4] proposed a collaborative filtering approach for movie recommendation and
they named their approach as 'Weighted KM-Slope-VU'. The authors divided the users into
clusters of similar users with the help of K-means clustering. Later, they selected a virtual opinion
leader from each cluster which represents the all the users in that particular cluster. Now, instead
of processing complete user-item rating matrix, the authors processed virtual opinion leader-item
matrix which is of small size. Later, this smaller matrix is processed by the unique algorithm
proposed by the authors. This way, the time taken to get recommendations is reduced.

S. Rajarajeswari, et. al. [5] discussed about Simple Recommender System, Content-based
Recommender System, Collaborative Filtering based Recommender System and finally proposed
a solution consisting of Hybrid Recommendation System. The authors have taken into
consideration cosine similarity and SVD. Their system gets 30 movie recommendations using
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cosine similarity. Later, they filter these movies based on SVD and user ratings. The system takes
into consideration only the recent movie which the user has watched because the authors have
proposed a solution which takes as input only one movie.

Muyeed Ahmed, et. al. [6] proposed a solution using K-means clustering algorithm. Authors have
separated similar users by using clusters. Later, the authors have created a neural network for each
cluster for recommendation purpose. The proposed system consists of steps like Data
Pre-processing, Principal Component Analysis, Clustering, Data Pre-processing for Neural
Network, and Building Neural Network. User rating, user preference, and user consumption ratio
have been taken into consideration. After clustering phase, for the purpose of predicting the
ratings which the user might give to the unwatched movies, the authors have used neural network.
Finally, recommendations are made with the help of predicted high ratings.

Gaurav Arora, et. al. [7] have proposed a solution of movie recommendation which is based on
users' similarity. The research paper is very general in the sense that the authors have not
mentioned the internal working details. In the Methodology section, the authors have mentioned
about City Block Distance and Euclidean Distance but have not mentioned anything about cosine
similarity or other techniques. The authors stated that the recommendation system is based on
hybrid approach using context based filtering and collaborative filtering but neither they have
stated about the parameters used, not they have stated about the internal working details.

V. Subramaniyaswamy, et. al. [8] have proposed a solution of personalized movie
recommendation which uses collaborative filtering technique. Euclidean distance metric has been
used in order to find out the most similar user. The user with least value of Euclidean distance is
found. Finally, movie recommendation is based on what that particular user has best rated. The
authors have even claimed that the recommendations are varied as per the time so that the system
performs better with the changing taste of the user with time.

Harper, et. al. [9] mentioned the details about the Movie Lens Dataset in their research paper. This
dataset is widely used especially for movie recommendation purpose. There are different versions
of dataset available like Movie Lens 100K / 1M / 10M / 20M / 25M /1B Dataset. The dataset
consists of features like user id, item id / movie id, rating, timestamp, movie title, IMDb URL,
release date, etc. along with the movie genre information.

According to R. Lavanya, et. al. [10], in order to tackle the information explosion problem,
recommendation systems are helpful. Authors mentioned about the problems of data sparsity, cold
start problem, scalability, etc. Authors have done a literature review of nearly 15 research papers
related to movie recommendation system. After reviewing all these papers, they observed that
most of the authors have used collaborative filtering rather than content-based filtering. Also, the
authors noticed that a lot of authors have used hybrid-based approach. Even though a lot of
research has been done on recommendation systems, there is always a scope for doing more in
order to solve the existing drawbacks.

Ms. Neeharika Immaneni, et. al. [11] proposed a hybrid recommendation technique which takes
into consideration both content-based filtering approach as well as collaborative filtering approach
in a hierarchical manner in order to show a personalized movie recommendation to the users. The
most unique thing about this research work is that the authors have made movie recommendations
using a proper sequence of images which actually describe the movie story plot. This actually
helps for better visuals. The author has also described the graph-based recommendation system,
content-based approaches, hybrid recommender systems, collaborative filtering systems, genre
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correlations-based recommender system, etc. The proposed algorithm has 4 major phases. Initially,
social networking website
like Facebook is used to know the user interest. Later, the movie reviews need to be analysed and
the recommendations needs to be made. Finally, story plot needs to be generated for better visuals.

Md. Akter Hossain, et. al. [12] proposed NERS which is an acronym for neural engine-based
recommender system. The authors have done a successful interaction between 2 datasets carefully.
Moreover, the authors stated that the results of their system are better than the existing systems
because they have incorporated the usage of general dataset as well as the behaviour-based dataset
in their system. The authors have used 3 different estimators in order to evaluate their system
against the existing systems.
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3. REQUIREMENTS AND ANALYSIS

Problem Statement:

For building a recommender system from scratch, we face several different problems. Currently
there are a lot of recommender systems based on the user information, so what should we do if the
website has not gotten enough users. After that, we will solve the representation of a movie, which
is how a system can understand a movie. That is the precondition for comparing similarity
between two movies. Movie features such as genre, actor and director are a way that can
categorize movies. But for each feature of the movie, there should be different weight for them
and each of them plays a different role for recommendation. So, we get these questions:

• How to recommend movies when there is no user information?
• What kind of movie features can be used for the recommender system?
• How to calculate the similarity between two movies?
• Is it possible to set weight for each feature?

Hardware platform:

Processor: Intel® Core™ i5-8250U CPU @ 1.60GHz – 1.80GHz
RAM: 8 GB

Software platform:

Operating System: Microsoft Windows 11 (64-bit)
Programming language used for model building: Python
Python notebook used: Jupyter Notebook
Others: Anaconda Navigator

Requirements:

• numpy: 1.22.3
• pandas: 1.4.1
• ast: 2.20.5
• streamlit: 1.7.0
• nltk: 3.7

Programming languages used for developing Web application: Python, CSS.
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4. SYSTEM DESIGN
4.1 Proposed Methodology:

We need to perform pre-processing on the dataset and combine the relevant features into a single
feature. Later, we need to convert the text from that particular feature into vectors. Later, we need
to find the similarity between the vectors. Finally, get the recommendations as per the system
architecture mentioned below.
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4.2 Dataset, exploratory data analysis & pre-processing:

The ‘TMDB 5000 Movie Dataset’ is taken into consideration for movie recommendation purpose
in this research work. This dataset is available on kaggle.com. The dataset is composed of 2 CSV
files - ‘tmdb_5000_movies.csv’ and ‘tmdb_5000_credits.csv’
The ‘tmdb_5000_movies.csv’ dataset consists of the following attributes:

● ‘budget’: It indicates the budget of the movie.
● ‘genres’: It indicates the genres of the movie like Action, Documentary, etc.
● A movie can have multiple genres.
● ‘homepage’: It indicates the homepage of the movie. It is basically a website link.
● ‘id’: It indicates movie ID.
● ‘keywords’: It indicates the keywords of the movie. Apart from the title of the movie,

keywords give a quick information about the movie.
● ‘original_language’: It indicates whether the movie is originally created in English or

other language.
● ‘original_title’: It is nothing but the movie title.
● ‘overview’: It is a short description of the movie.
● ‘popularity’: It is a metric which indicates popularity.
● ‘production_companies’: It consists of the names of companies which has produced the

movie
● ‘production_countries’: It consists of the names of the countries in which the movie

production took place.
● ‘release_date’: It consists of the release date of the movie. The format used is

yyyy-mm-dd where ‘yyyy’
● indicates year of release, ‘mm’ indicates the month of release, and ‘dd’ indicates the

day of release.
● ‘revenue’: It indicates the revenue earned by the movie.
● ‘runtime’: It indicates the runtime of a movie. Runtime basically means the length of

the movie.
● ‘spoken_languages’: It consists of the languages spoken in the movie.
● ‘status’: It indicates the status of the movie. For example, a movie can be released or

not released which basically indicates the status of that movie.
● ‘tagline’: It consists of the tagline of the movie.
● ‘title’: It consists of the title of the movie.
● ‘vote_average’: It indicates the average of the votes.
● ‘vote_count’: It indicates the vote count.

Fig. 1. Statistical data about ‘tmdb_5000_movies.csv’ dataset using pandas Dataframe.describe() method
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Fig. 2. Glimpse of the ‘tmdb_5000_movies.csv’ dataset using ‘The Amazing Spiderman’ movie

The ‘tmdb_5000_credits.csv’ dataset consists of the following attributes:

● ‘movie_id’: It indicates the movie ID.
● ‘title’: It indicates the title of the movie.
● ‘cast’: It consists of the cast of the movie. Cast implies the actors and actresses who

appear in the movie.
● ‘crew’: It consists of those people who are concerned with the production of the movie.

Fig. 3. Statistical data about ‘tmdb_5000_credits.csv’ dataset using pandas Dataframe.describe() method
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Fig. 4. Glimpse of the ‘tmdb_5000_credits.csv’ dataset using ‘The Amazing Spiderman’ movie

Fig. 5. Top Genres

Movies having the genre as Drama are maximum in number as compared to Family movies and
Horror movies. A movie might have multiple genres.

Fig. 6. Actor with highest appearance

The above figure indicates the actors with the highest appearance in the decreasing order.
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Fig. 7. Correlation Matrix for ‘tmdb_5000_movies.csv’ dataset

From the above correlation matrix, it can be seen that the diagonal is yellow coloured because
similarity of something with itself is always 1.0, i.e., maximum. Moreover, it can be seen that
revenue and vote count have more similarity as compared to budget and vote count.

Data Cleaning:
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Since the dataset contained some null values, we searched for them and dropped them. Also, we
checked for the duplicated values.

Data processing:

import ast
def convert(obj):

L = []
for i in ast.literal_eval(obj):

L.append(i['name'])
return L

Using the convert function, we are retrieving the ‘name’ value from each row of the ‘genre’
column and appending into a list and storing it back into the ‘genre’ column.

Similarly, we follow the same procedure for the ‘keyword’ column.

def convertcast(obj):
L = []
c = 0
for i in ast.literal_eval(obj):

if c!=3:
L.append(i['name'])
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c+=1
else:

break
return L

The convertcast function retrieves the first three ‘name’ values from each row of the cast column
and appending into a list and storing it back into the ‘cast’ column.

def fetch_director(obj):
L = []
for i in ast.literal_eval(obj):

if i['job'] == 'Director':
L.append(i['name'])
break

return L

The fetch_director function fetches only the name of the director from the crew column and stores
it as a list of single value back into the crew column.
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Then we removed the extra white spaces between two words of an individual element from the
lists to consider it as a single word for further analysis.

We then created a new column ‘tags’ by concatenating the ‘genres’, ‘keywords’, ‘cast’ and ‘crew’
columns into one.
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Then we named the ‘movies’ table into ‘new_df’ with id, title and tags as the attributes for further
analysis.

The ‘tags’ column of the new_df table is then arranged in a way such that each element of the lists
are joined with a single space in between to simplify the process of analysis.

Text-vectorization:
Now that we have generated tags for each movie, it is time to calculate the similarity among them.
But the tags are textual values but not any numerical ones. So, we cannot apply any sort of
mathematical formula or operations to generate similarity. This is where comes the idea of text
vectorization. Text vectorization is the process of converting texts to vectors using different
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approaches. When we apply the process of vectorization, each movie becomes a vector just like a
coordinate in a 2-D space. Then our task is to recommend the closest vectors (or movies) with
respect to a selected movie.

In the above diagram, if the selected movie is depicted by the red arrow vector, then the closest
arrows adjacent to it are the similar movies that will be recommended. Here we have followed the
Bag of Words technique for text vectorization.

We concatenated the tags of all the movies and chose the 5000 most frequently used words. Then
we compared each movie tags with these 5000 words and taking into consideration, the frequency
of each word for each movie, we created a vector for each of them. This gave us a 4809 X 5000
sparse matrix for further analysis. This entire process was done using CountVectorizer class from
sklearn library.
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Stemming:

Then we used the PorterStemmer class from nltk library to remove the redundant words and words
of the same nature from the tags of the movies. This process is also known as stemming and it
helps us perform a better and simplified analysis.

Similarity:

We then used the cosine_similarity function from sklearn library which helped us to generate the
similarity matrix that contains the similarity of each movie with respect to each other movie in the
dataset. This is the final matrix which helps us recommend movies based on a specific movie of
the user’s choice.

24



Finally, we created the ‘recommend’ function which helps us recommend top 6 movies similar to
the movie selected by the user with the help of the similarity matrix which we generated above.

We have given two example outputs of the movies recommended by our model. We have selected
the movies ‘Shutter Island’ and ‘Batman’ as input and our recommender system has recommended
top 6 movies similar to these. The results are very accurate from personal experience and thus we
conclude that our recommender system seems to be a decent one.

4.3 Algorithms:

(1) PorterStemmer:

Stemming is the process of producing morphological variants of a root/base word. Stemming
programs are commonly referred to as stemming algorithms or stemmers. A stemming algorithm
reduces the words “chocolates”, “chocolatey”, “choco” to the root word, “chocolate” and
“retrieval”, “retrieved”, “retrieves” reduce to the stem “retrieve”.
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The Porter stemming algorithm (or ‘Porter stemmer’) is a process for removing the commoner
morphological and inflexional endings from words in English. Its main use is as part of a term
normalisation process that is usually done when setting up Information Retrieval systems.

Example:

#importing modules

from nltk.stem import PorterStemmer

from nltk.tokenize import word_tokenize

ps = PorterStemmer()

sentence = "Programmers program with programming languages"

words = word_tokenize(sentence)

for w in words:

print(w, " : ", ps.stem(w))

Output:

Programmers  :  program

program  :  program

with  :  with

programming  :  program

languages  :  languag

Implementation in our model:

import nltk

from nltk.stem.porter import PorterStemmer

ps = PorterStemmer()

def stem(text):

y = []

for i in text.split():

y.append(ps.stem(i))

return " ".join(y)
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(2) CountVectorizer:

CountVectorizer is a great tool provided by the scikit-learn library in Python. It is used to
transform a given text into a vector on the basis of the frequency (count) of each word that occurs
in the entire text. This is helpful when we have multiple such texts, and we wish to convert each
word in each text into vectors (for using in further text analysis).

class sklearn.feature_extraction.text.CountVectorizer(*, input='content', encoding='utf-8', decode_error='s
trict', strip_accents=None, lowercase=True, preprocessor=None, tokenizer=None, stop_words=None, toke
n_pattern='(?u)\b\w\w+\b', ngram_range=(1, 1), analyzer='word', max_df=1.0, min_df=1, max_features=
None, vocabulary=None, binary=False, dtype=<class 'numpy.int64'>)

Example:

from sklearn.feature_extraction.text import CountVectorizer

document = ["One Geek helps Two Geeks",

"Two Geeks help Four Geeks",

"Each Geek helps many other Geeks at GeeksforGeeks"]

# Create a Vectorizer Object

vectorizer = CountVectorizer()

vectorizer.fit(document)

# Printing the identified Unique words along with their indices

print("Vocabulary: ", vectorizer.vocabulary_)

# Encode the Document

vector = vectorizer.transform(document)

# Summarizing the Encoded Texts

print("Encoded Document is:")

print(vector.toarray())
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Output:

Vocabulary:  {'one': 9, 'geek': 3, 'helps': 7, 'two': 11, 'geeks': 4, 'help': 6, 'four': 2, 'each': 1, 'many':
8, 'other': 10, 'at': 0, 'geeksforgeeks': 5}

Encoded Document is:

[ [0 0 0 1 1 0 0 1 0 1 0 1]

[0 0 1 0 2 0 1 0 0 0 0 1]

[1 1 0 1 1 1 0 1 1 0 1 0] ]

Implementation in our model:

from sklearn.feature_extraction.text import CountVectorizer

cv = CountVectorizer(max_features=5000,stop_words='english')

vector = cv.fit_transform(new_df['tags']).toarray()

(3) Cosine Similarity:

Cosine similarity is a metric, helpful in determining, how similar the data objects are irrespective
of their size. We can measure the similarity between two sentences in Python using Cosine

28



Similarity. In cosine similarity, data objects in a dataset are treated as a vector. The formula to find
the cosine similarity between two vectors is –

Cos(x, y) = x . y / ||x|| * ||y||

where,

● x . y = product (dot) of the vectors ‘x’ and ‘y’.
● ||x|| and ||y|| = length of the two vectors ‘x’ and ‘y’.
● ||x|| * ||y|| = cross product of the two vectors ‘x’ and ‘y’.
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5. IMPLEMENTATION AND TESTING
5.1 Dataset used

The ‘TMDB 5000 Movie Dataset’ is taken into consideration for movie recommendation purpose
in this research work. This dataset is available on www.kaggle.com. The dataset is composed of 2
CSV files - ‘tmdb_5000_movies.csv’ and ‘tmdb_5000_credits.csv’

5.2 Code for building the model

The code was written in Python scripting language and it was run on Jupyter Notebook:

import numpy as np
import pandas as pd

movies = pd.read_csv('tmdb_5000_movies.csv')
credits = pd.read_csv('tmdb_5000_credits.csv')

movies.head()
credits.head()
movies.shape
credits.shape

movies = movies.merge(credits,on='title')

movies.shape
movies.head()

# we would recommend movies on the basis of
#genres
#keywords
#title
#cast
#crew
#and we'll keep the id column as it's a primary key
#rest of the attributes we'll remove

movies = movies[['id','title','genres','keywords','cast','crew']]
movies.head()

movies.isnull().sum()

movies.dropna(inplace=True)

movies.isnull().sum()
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movies.duplicated().sum()

import ast
def convert(obj):
    L = []
   for i in ast.literal_eval(obj):
        L.append(i['name'])
   return L

movies['genres'].apply(convert)
movies['genres'] = movies['genres'].apply(convert)
movies.head()

movies['keywords'].apply(convert)
movies['keywords'] = movies['keywords'].apply(convert)
movies.head()

def convertcast(obj):
    L = []
    c = 0
   for i in ast.literal_eval(obj):
       if c!=3:
            L.append(i['name'])
            c+=1
       else:
           break
   return L

movies['cast'].apply(convertcast)
movies['cast'] = movies['cast'].apply(convertcast)
movies.head()

def fetch_director(obj):
    L = []
   for i in ast.literal_eval(obj):
       if i['job'] == 'Director':
            L.append(i['name'])
           break
   return L

movies['crew'].apply(fetch_director)
movies['crew'] = movies['crew'].apply(fetch_director)
movies.head()

movies['genres'] = movies['genres'].apply(lambda x:[i.replace(" ","")
for i in x])
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movies['keywords'] = movies['keywords'].apply(lambda x:[i.replace("
","") for i in x])
movies['cast'] = movies['cast'].apply(lambda x:[i.replace(" ","") for i
in x])
movies['crew'] = movies['crew'].apply(lambda x:[i.replace(" ","") for i
in x])
movies.head()

movies['tags'] = movies['genres'] + movies['keywords'] + movies['cast']
+ movies['crew']
movies.head()

new_df = movies[['id', 'title', 'tags']]
new_df.head()

new_df['tags'] = new_df['tags'].apply(lambda x:" ".join(x))
new_df.head()

new_df['tags'][3]

new_df['tags'] = new_df['tags'].apply(lambda x:x.lower())
new_df.head()

import nltk
from nltk.stem.porter import PorterStemmer
ps = PorterStemmer()
def stem(text):
    y = []
   
   for i in text.split():
        y.append(ps.stem(i))
   return " ".join(y)

new_df['tags'] = new_df['tags'].apply(stem)
new_df['tags'][0]

from sklearn.feature_extraction.text import CountVectorizer
cv = CountVectorizer(max_features=5000,stop_words='english')
vector = cv.fit_transform(new_df['tags']).toarray()

vector.shape

vector[0]
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len(cv.get_feature_names())
cv.get_feature_names()

from sklearn.metrics.pairwise import cosine_similarity
similarity = cosine_similarity(vector)
similarity

def recommend(movie):
    movie_index = new_df[new_df['title'] == movie].index[0]
    distances = similarity[movie_index]
    movies_list =
sorted(list(enumerate(distances)),reverse=True,key=lambda x:x[1])[1:7]

   for i in movies_list:
        print(new_df.iloc[i[0]].title)

recommend('Shutter Island')

recommend('Batman')
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import pickle
pickle.dump(new_df,open('movies.pkl','wb'))

5.3 Code for the Webapp:

#movies.py: Code for the frontend of webapp

import json
from numpy import imag
import streamlit as st
import streamlit.components.v1 as components
import pickle
import pandas as pd
import requests

with open('style.css') as f:
    st.markdown(f'<style>{f.read()}</style>',unsafe_allow_html=True)

def fetch_posters(movie_id):
   
response=requests.get("https://api.themoviedb.org/3/movie/{}?api_key=74
e3b918d5bd830f89748d5576f8641a&language=en-US".format(movie_id))
    data=response.json()
   return "https://image.tmdb.org/t/p/w500/"+data['poster_path']

def fetch_overview(movie_id):
   
response=requests.get("https://api.themoviedb.org/3/movie/{}?api_key=74
e3b918d5bd830f89748d5576f8641a&language=en-US".format(movie_id))
    data=response.json()
   return data['overview']
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def recommend(movie):
   try:
        index = movies[movies['title'] == movie].index[0]
        distances = sorted(list(enumerate(similarity[index])),
reverse=True, key=lambda x: x[1])
        recommended_movie_names = []
        recommended_movies_posters=[]
        director_names=[]
        movies_overview = []
       for i in distances[1:7]:
           # fetch the movie poster
            movie_id = movies.iloc[i[0]].movie_id
            recommended_movie_names.append(movies.iloc[i[0]].title)
            director_names.append(director.iloc[i[0]].director)
            recommended_movies_posters.append(fetch_posters(movie_id))
            movies_overview.append(fetch_overview(movie_id))

       return recommended_movie_names,
recommended_movies_posters,movies_overview,director_names

   except TypeError as e:
        print(e)

st.title("We Can Recommend You Movies")
movies=pickle.load(open("movies_new2.pkl","rb"))
similarity=pickle.load(open("similarity2.pkl","rb"))
director=pickle.load(open("directors2.pkl","rb"))
movies_list=movies["title"].values
selected_movies=st.selectbox("Select Your movies",movies_list)
try:
   if st.button("Recommend"):
        name,poster,overview,director_name=recommend(selected_movies)

        col1,col2,col3,col4,col5,col6=st.columns([6,6,6,6,6,6])

       with col1:
            st.text(name[0])
            dir_name=director_name[0]
            st.image(poster[0])
            st.text("Directed By: "+dir_name)
            st.write(overview[0])

       with col2:
            st.text(name[1])
            dir_name=director_name[1]
           #st.write("Directed By: "+dir_name)
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            st.image(poster[1])
            st.text("Directed By: "+dir_name)
            st.write(overview[1])

       with col3:
            st.text(name[2])
            dir_name=director_name[2]
            st.image(poster[2])
            st.text("Directed By: "+dir_name)
            st.write(overview[2])
       with col4:
            st.text(name[3])
            dir_name=director_name[3]
            st.image(poster[3])
            st.text("Directed By: "+dir_name)
            st.write(overview[3])

       with col5:
            st.text(name[4])
            dir_name=director_name[4]
            st.image(poster[4])
            st.text("Directed By: "+dir_name)
            st.write(overview[4])

       with col6:
            st.text(name[5])
            dir_name=director_name[5]
            st.image(poster[5])
            st.text("Directed By: "+dir_name)
            st.write(overview[5])

except TypeError as e:
    st.text("We can not find the given movie name")
           

#style.css: CSS code for movies.py

.css-1v3fvcr
{
   display: flex;
   flex-direction: column;
   width: 100%;
   overflow: auto;
   -webkit-box-align: center;
   align-items: center;
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}
div.css-ocqkz7
{
   margin-top:20px;
   display:flex;
   column-gap: 20px;
   -webkit-box-align: stretch;
   justify-content: space-around;
   justify-content: space-between;
   align-items: stretch;
   -webkit-box-flex: 2;
   flex-grow: 4;
   width:800px;
   gap: 3rem;
   margin-right:350px;
   margin-left:0px;
}

div.css-ocqkz7>*
{
   flex:0 0 33.3333%;
   text-align:center;
}

div.css-183lzff
{
   font-family: sans-serif;
   font-size: 20px;
   color: white;
   font-style:bold;
   overflow-x: visible;
   padding:2px;
   width:80px;
}

.css-5ft5ak
{
   width: 267px;
   position: relative;
   display: flex;
   flex: 1 1 0%;
   flex-direction: column;
   gap: 1rem;
   margin-top:20px;
}
div.css-183lzff
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{
   width:370px;
}
div.css-1pmdbur
{
   width: 1000px;
   height: 300px;
   padding-bottom: 25px;
   padding:5px;
   display: block;
   gap: 1rem;
}

/*posters*/
div.css-1v0mbdj
{
   display: block;
   width: 550px;
   padding:10px;
}
.stMarkdown
{
   overflow-x: scroll;
   height:112px;        
}
div.css-1v0mbdj img
{
   width:200px;
}
.css-ytjvkl
{
   width: 284px;
   position: relative;
   display: flex;
   flex: 1 1 0%;
   flex-direction: column;
   gap: 1rem;
   border-bottom:1px tomato solid;
   padding-bottom:10px;
}
.css-1uubtht
{
   width: 202px;
   position: relative;
   display: flex;
   flex: 1 1 0%;
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   flex-direction: column;
   gap: 1rem;
}
.css-14mi1u4 {
   width: 161px;
   position: relative;
   display: flex;
   flex: 1 1;
   flex-direction: column;
   gap: 2rem;
}

6. RESULTS
This section consists of the output of the recommended movies based on the movie selected by the
user.

Output - 1
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Output - 2
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Output - 3
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Output - 4
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7. CONCLUSION
The proposed algorithm uses textual metadata of the movies like plot, cast, genre, release year and
other production information to analyse them and recommend the most similar ones. Our system
only needs a movie which the user is interested in to come up with suitable recommendations. For
evaluation, we ran our algorithm on a subset of all the movies present on the TMDB server. The
paper analyses application similarity measure for recommendations forecasting in
recommendations systems. It is shown that used method for computing similarity measure in
recommendations systems are cosine similarity measure. We also work on allowing retraining of
the system, by rating results as “good” or “bad”, thus making the predictions much more precise
than just selecting one movie or giving one piece of text.

7.1 Future Scope

Future work includes keeping a track of movies searched by users in nearby location to
recommend trending movies. We can try to combine the watch history of the user with the watch
history of geographically contextual users (those living nearby) to give more ‘location relevant’
recommendations. Furthermore, using user ratings of movies on websites like Rotten tomatoes,
Metacritic, IMDB etc. opens up the possibility of combining collaborative filtering techniques
with our method into a hybrid model to get the best out of both approaches.
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Comparison and Evaluation of Electoral Systems 
Ayan Banerjee, Srijan Paria 

Department of Computer Science, Ramakrishna Mission Residential College, Narendrapur 
  
Abstract: The current electoral system in India has recently come into scrutiny due to its high 
disproportionality, making voters wary of the system. At the same time, many countries use 
some other types of electoral systems, which are often quite different from the system we use 
in India. This paper studies the different types of electoral systems that are currently used in 
the world. It evaluates the proportionality and party fragmentation of each system by using 
suitable mathematical tools. It then checks how much compatible these systems are when 
compared to the Indian conditions. Finally, it proposes a system which might be compatible 
and suitable for India. 

Keywords: FPTP, PR, D’Hondt method, Webster/Sainte-Laguë method, Gallagher index, 
Effective no. of parties. 
  

I.   INTRODUCTION 

The choice of electoral system is one of the most important institutional decisions for any 
democracy, yet only rarely are electoral systems consciously and deliberately selected. Often 
the choice is essentially accidental, the result of an unusual combination of circumstances, of 
a passing trend, or of a quirk of history, with the impact of colonialism and the effects of 
influential neighbours often especially strong. Yet in almost all cases the choice of a 
particular electoral system has a profound effect on the future political life of the country 
concerned, and in most cases electoral systems, once chosen, remain fairly constant as 
political interests congeal around and respond to the incentives presented by them. 

At the most basic level, electoral systems translate the votes cast in an election into seats won 
by parties and candidates. The key variables are the electoral formula used (i.e., whether the 
system is majoritarian or proportional, and what mathematical formula is used to calculate the 
seat allocation) and the district magnitude (not how many voters live in a district, but how 
many members of parliament that district elects). Electoral system design also affects many 
areas of electoral laws: the choice of electoral system has an influence on the way in which 
district boundaries are drawn, how voters are registered, the design of ballot papers, how 
votes are counted, along with numerous other aspects of the electoral process. 

Political institutions shape the rules of the game under which democracy is practised, and it is 
often argued that the easiest political institution to be manipulated, for good or for bad, is the 
electoral system, because in translating the votes cast in a general election into seats in the 
legislature, the choice of electoral system can effectively determine who is elected and which 
party gains power. Even with exactly the same number of votes for parties, one electoral 
system might lead to a coalition government while another might allow a single party to 
assume majority control. But a number of other consequences of electoral systems go beyond 
this primary effect. The type of party system which develops, in particular the number and 
the relative sizes of political parties in parliament, is heavily influenced by it. So is the 
internal cohesion and discipline of parties: some systems may encourage factionalism, where 
different wings of one party are constantly at odds with each other, while another system 
might encourage parties to speak with one voice and suppress dissent. Electoral systems can 
also influence the way parties campaign and the way political élites behave, thus helping to 



determine the broader political climate; they may encourage, or retard, the forging of 
alliances between parties; and they can provide incentives for parties and groups to be broad-
based and accommodating, or to base themselves on narrow appeals to ethnicity or kinship 
ties. In addition, if an electoral system is not considered “fair” and does not allow the 

opposition to feel that they have the chance to win next time around, an electoral system may 
encourage losers to work outside the system, using non-democratic, confrontationalist and 
even violent tactics. And finally the choice of electoral system will determine the ease or 
complexity of the act of voting. 

But before we analyse some of the electoral systems that are used around the world, we must 
first set up the conditions that an ideal electoral system must try to satisfy. 

II.   CRITERIA FOR AN IDEAL ELECTORAL SYSTEM 

1. Fair and Just Representation – An elected body must properly represent its electorate. 
It must not over-represent or under-represent any section of the electorate. It must be 
a representative sample of all the different voices comprising the electorate. 

2. Proportional Representation – A party must win seats in accordance to its vote share. 
There must not be a big difference between a party’s vote share and its seat share. 

3. Accessibility – The electoral system must not be too complex but be easy to 
understand by the average voter. 

4. Stability – The electoral system must ensure and promote stability in government 
formation and function as well as discourage massive policy shifts between one 
government and the next one. 

5. Reduce Tactical Voting – The electoral system must encourage voters to vote 
honestly for their most favourite candidate rather than vote tactically against their 
least favourite candidate. 

6. Prevent Fragmentation – The electoral system must not lead to excessive 
fragmentation within the elected body which might severely affect its stability. 

7. Prevent Polarisation – The electoral system must encourage parties to work with each 
other and find common ground to make consensual decisions rather than divide them 
into adversarial rivals with polar opposite worldviews. 

8. Competitiveness – The electoral system must encourage competition among 
candidates and reduce the number of safe seats and uncontested seats. 

9. Low Wasted Votes – The electoral system must not result in a high number of wasted 
votes. 

10. Cost Effective – The cost of conducting an election and calculating the result must be 
reasonably within an acceptable range. 

III.   MEASURES TO EVALUATE DISPROPORTIONALITY AND 
FRAGMENTATION 

Before we begin analysing the different types of electoral systems, we must first acquaint 
ourselves with some important statistical methodologies, which will be very important in 
comparing these systems. 

1. Gallagher Index –   The Gallagher index is a statistical analysis methodology which 
measures an electoral system’s relative disproportionality between votes received and 
seats allotted in a legislature. Michael Gallagher, who created the index, referred to it 
as a “least squares index”. The index is therefore commonly abbreviated as “LSq”. 



LSq = √
1

2
∑(𝑉𝑖 − 𝑆𝑖)2
𝑛
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2. Effective No. of Parties – The effective no. of parties is a concept introduced by 
Laakso and Taagepera which provides for an adjusted no. of political parties in a 
country's party system. The idea behind this measure is to count parties and, at the 
same time, to weight the count by their relative strength. The effective no. of parties is 
a frequent operationalization for the fragmentation of a party system. 

ENP =
1

∑ 𝑝𝑖2𝑛
𝑖=1

 

IV.   TYPES OF ELECTORAL SYSTEMS 

Electoral systems can be broadly classified into 3 types: 
1. Majoritarian electoral system 
2. Proportional electoral system 
3. Semi-proportional electoral system 

V.   MAJORITARIAN ELECTORAL SYSTEMS 

A majoritarian electoral system is an electoral system which uses the winner-takes-all 
principles and in this way provides majoritarian representation. The distinguishing feature of 
such systems is that they almost always use single-member constituencies. Some examples of 
such a system are first past the post system, two-round voting system, instant runoff voting 
system, etc. 

A. First Past The Post (FPTP) System 

The current electoral system used in India is called first past the post (FPTP) system. It is the 
simplest electoral system in the world. In this system, voters cast their vote for a candidate of 
their choice and the candidate who receives the most votes wins. It is primarily used for 
single-member constituencies. 

Countries that use FPTP system: India, UK, USA. 

Algorithm for Indian system: 
We assume that all votes cast are valid 
Let c be the total no. of constituencies 
For k=1 to c 
   Let n be the total no. of candidates participating in the constituency 
   Let v be an array of size n which contains the total no. of votes received by each candidate 
   Let max,w be variables with initial value 0 
   For i=1 to n 
      If vi>max 
         max=vi 
         w=i 
      Endif 
   Endfor 
   wth candidate is the winner 
Endfor 



Example: 
1. Theoretical Example :- 

In a particular constituency, the following is the election result.
Candidate Votes Vote % 
A 50 39.06  
B 35 27.34 
C 15 11.72 
D 28 21.88 

Total 128 100.00 
Here, A wins the election even though >60% of the voters did not vote for them. 

2. Real World Example :- 
2022 Punjab Legislative Assembly Election 

Party Votes Vote % Seats Seat % 
AAP 65,38,783 42.01 92 78.63 
INC 35,76,684 22.98 18 15.38 
SAD+ 31,36,518 20.15 4 3.42 
NDA 12,03,835 7.74 2 1.71 
Others 9,97,592 6.41 1 0.86 
NOTA 1,10,320 0.71 0 0.00 
Total 1,55,63,732 100.00 117 100.00 

 

 

Gallagher Index: 
Party Vote % Seat % Difference Difference Squared 

AAP 42.01 78.63 -36.62 1341.0244 
INC 22.98 15.38 7.6 57.76 
SAD+ 20.15 3.42 16.73 279.8929 
NDA 7.74 1.71 6.03 36.3609 
Others 6.41 0.86 5.55 30.8025 
NOTA 0.71 0.00 0.71 0.5041 

Total 1746.3448 
Total/2 873.1724 

Square Root of (Total/2) 29.55 
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Effective No. of Parties: 

Party Seats(s) (𝒔 ∑𝒔⁄ )𝟐 

AAP 92 0.6183066696 
INC 18 0.0236686391 
SAD+ 4 0.0011688217 
NDA 2 0.0002922054 
Independent 1 0.0000730514 
Total(∑) 117 0.64351 
𝟏
∑(𝒔 ∑ 𝒔⁄ )

𝟐⁄  1.55 

Problems with FPTP: 
1. Winner-Takes-All – In FPTP, the candidate with the most votes wins the seat 

irrespective of whether they got a majority of the vote or not. As long as they get 
more votes than everybody else, they are good to go. When there are more than two 
candidates, which is often the case, this leads to minority rule. 

2. Two Party State – According to Duverger’s law, FPTP promotes a two party state. 
Over time, there remain only two significant big parties, with minor third parties 
pushed into irrelevance. This is unsuitable in the modern world, where there are a 
multitude of political viewpoints. 

3. Polarisation – A two party state promotes polarisation of the electoral environment as 
these two parties have nothing in common and treat the other as their sworn enemies. 
It also leads to massive shifts in governmental policies whenever there is a change in 
government. 

4. Geographical Favouritism – FPTP over-represents parties who can concentrate their 
vote into certain electoral constituencies. On the other hand, parties that do not 
concentrate their vote end up getting under-represented. So, FPTP favours strong 
regional parties and hampers minor national parties. 

5. Safe Seats – FPTP tends to deliver a significant number of safe seats, where a 
representative is sheltered from any but the most dramatic change in voting 
behaviour. In extreme cases, this leads to such disillusionment in other candidates that 
the seats go uncontested. This also discourages the voters to come out and vote for the 
opposing candidates because they know it would only be a symbolic exercise. 

6. Gerrymandering – Gerrymandering refers to political manipulation of electoral 
constituency boundaries with the intent of creating undue advantage for a particular 
party, group or socio-economic class within that constituency. FPTP is very prone to 
gerrymandering. So, whoever controls the redistricting process has undue power to 
manipulate an election in such a way that it disproportionally favours their favourite 
candidate or party. 

7. Spoiler Effect – Under FPTP, a small party may draw votes and seats away from a 
larger party that is more similar to, and therefore give an advantage to one it is less 
similar to. 

8. Tactical Voting – FPTP encourages tactical voting. Voters have an incentive to vote 
for a candidate who they predict is more likely to win, as opposed to their preferred 
candidate who may be unlikely to win and for whom a vote could be considered as 
wasted. 

 
 

9. Wasted Votes – Wasted votes are seen as those cast for losing candidates, and for 
winning candidates in excess of number required for victory. They have no impact on 



the makeup of the elected body or the election result. This, in turn, lowers voter 
participation since they know their votes do not matter. A common feature of FPTP is 
a large number of wasted votes. 

B. Two-Round System 

The two-round system is a voting method used to elect a single candidate, where voters cast a 
single vote for their preferred candidate. The election proceeds to a second round only if in 
the first round no candidate received a simple majority of votes cast, or some other lower 
percentage. Under this system, usually only the top two candidates in the first round qualify 
to the second. Other candidates are excluded from the second round. 

Countries that use Two-Round system: France, Haiti. 

Algorithm for French system: 
We assume that all votes cast are valid 
Let c be the total no. of constituencies 
For k=1 to c 
   Let n be the total no. of eligible voters in the constituency 
   Let m be the total no. of votes cast 
   Let x be the total no. of candidates participating in the constituency 
   Let v be an array of size x which containsthe total no. of votes received by each candidate 
   Let flag,q be variables with initial value 0 
   For i=1 to x 
      If ((vi>((1/2)*m)) && (vi>=((1/4)*n))) 
         ith candidate is the winner 
         flag=1 
         break 
      Endif 
      If (vi>=((1/8)*n)) 
         q=q+1 
      Endif 
   Endfor 
   If flag==0 
      Let j be a variable with initial value 0 
      If q>2 
         Let r be an array of size q which contains the candidate no. of those candidates who 
         qualify for the second round 
         For i=1 to x 
            If (vi>=((1/8)*n)) 
               rj=i 
               j=j+1 
            Endif 
         Endfor 
      Endif 
      Else 
         Let r be an array of size 2 which contains the candidate no. of those candidates who 
         qualify for the second round 
         Let a,b be variables with initial value 0 
         For i=1 to x 
            If vi>a 



               b=a 
               r2=r1 
               a=vi 

               r1=i 
            Endif 
            Else if vi>b 
               b=vi 
               r2=i 
            Endelseif 
         Endfor 
      Endelse 
   If (flag!=1) 
      Hold second round of elections where candidate nos. in r only participate and the rest are 
      eliminated 
      Let max,w be variables with initial value 0 
      Let z be the no. of candidates qualified 
      Let s be an array of size z which contains the total no. of votes received by each candidate 
      in the second round 
      For i=1 to z 
         If(si>max) 
            max=si 
            w=i 
         Endif 
      Endfor 
      wth candidate is the winner 
   Endif 
Endfor 

Example: 
1. Theoretical Example :- 

Let the total no. of eligible voters within a particular constituency be 200. 
Candidate Votes Vote % 
A 10 6.94 
B 60 41.67 
C 20 13.88 
D 15 10.42 
E 24 16.67 
F 15 10.42 

Total 144 100.00 
Since, none of the candidates satisfy the first criteria, a second round of elections has 
to be held. We see that the no. of candidates crossing the 12.5% of all eligible voters 
(=25) mark is not greater than 2, so we select the candidates with the highest and the 
second highest no. of votes to participate in the second round, which in this case is B 
and E, and all the other candidates are eliminated. 

Candidate Votes Vote % 
B 60 48 
E 65 52 

Total 125 100 
Thus, E wins the election. 
 



2. Real World Example :- 
2017 French Legislative Election 

Party 
First Round Second Round 

Seats Seat % 
Votes Vote % Votes Vote % 

LREM/MoDem 73,23,496 32.33 89,26,901 49.11 350 60.66 
LR/UDI/DVD 48,85,997 21.57 48,98,061 26.95 136 23.57 
FN 29,90,454 13.20 15,90,869 8.75 8 1.39 
FI 24,97,622 11.02 8,83,573 4.86 17 2.95 
PS/PRG/DVG 21,54,269 9.51 13,61,190 7.49 45 7.80 
Ecologists 9,73,527 4.30 23,197 0.13 1 0.17 
PCF 6,15,487 2.72 2,17,833 1.20 10 1.73 
Others 12,13,312 5.35 2,74,442 1.51 10 1.73 

Total 2,26,54,164 100.00 1,81,76,066 100.00 577 100.00 
 

 

Gallagher Index: 

Party 
Vote % 

(First Round) Seat % Difference 
Difference 
Squared 

LREM/MoDem 32.33 60.66 -28.33 802.5889 
LR/UDI/DVD 21.57 23.57 -2 4 
FN 13.20 1.39 11.81 139.4761 
FI 11.02 2.95 8.07 65.1249 
PS/PRG/DVG 9.51 7.80 1.71 2.9241 
Ecologists 4.30 0.17 4.13 17.0569 
PCF 2.72 1.73 0.99 0.9801 
Others 5.35 1.73 3.62 13.1044 

Total 1045.2554 
Total/2 522.6277 

Square Root of (Total/2) 22.86 
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Effective No. of Parties: 

Party Seats(s) (𝒔 ∑𝒔⁄ )𝟐 

LREM/MoDem 350 0.3679463189 
LR/UDI/DVD 136 0.0555553887 
FN 8 0.0001922332 
FI 17 0.0008680529 
PS/PRG/DVG 45 0.0060823779 
Ecologists 1 0.0000030036 
PCF 10 0.0003003643 
DIV 3 0.0000270328 
DLF 1 0.0000030036 
REG 5 0.0000750911 
EXD 1 0.0000030036 

Total(∑) 577 0.43106 
𝟏
∑(𝒔 ∑𝒔⁄ )

𝟐⁄  2.32 

Issues: 
1. This system does not solve the problem of disproportionality. As such, it repeats most 

of the flaws of the FPTP system that arise due to disproportionality. 
2. Conducting two round elections in a country as big and geographically diverse as 

India is just not feasible. 
3. In eliminating most candidates after the first round, it disincentivizes voter turnout. 
4. Voters are forced to vote tactically in case their favourite candidate gets eliminated 

after the first round. 
5. This system does not reduce the spoiler effect. 

C. Instant-Runoff Voting (IRV) System 

Instant-runoff voting is a type of ranked preferential voting method. It uses a majority voting 
rule in single winner elections where there are more than two candidates. Voters in IRV rank 
their candidates in order of preference. Ballots are initially counted for each voter’s first 

preference. If a candidate has more than half of the vote based on first preferences that 
candidate wins. If not, then the candidate with the fewest votes is eliminated, and their voters’ 

next preferences are checked and subsequently distributed. This process continues until a 
candidate has more than half of the votes. This system reduces the spoiler effect and is also 
significantly less susceptible to tactical voting. 

Countries that use IRV system: Australia, Papua New Guinea. 

Algorithm for Australian system: 
We assume that all votes cast are valid 
Let c be the total no. of constituencies 
For k=1 to c 
   Let n be the total no. of candidates participating in th constituency 
   Let x be the total no. of votes cast 
   Let b be a two dimensional array of size x,n which contains the ballot details of each vote 
   Let v be an array of size n which contains the total no. of votes received by each candidate 
   Let pref be an array of size x which contains the preference no. of the respective ballot 
   which is currently in play, where all elements have initial value 1 



   For i=1 to x 
      Let z be a variable 
      z=bi1 
      vz=vz+1 
   Endfor 
   Let flag be a variable with initial value 0 
   While flag!=1 
      Let maxc,minc be two variables 
      Let max be a variable with initial value 0 
      Let min be a variable with initial value ∞ 
      For i=1 to n 
         If max<vi 
            max=vi 
            maxc=i 
         Endif 
         If min>vi 
            min=vi 
            minc=i 
         Endif 
      Endfor 
      If (max>((1/2)*x)) 
         flag=1 
      Endif 
      Else 
         mincth candidate is eliminated and their voters next preferences are checked and 
         subsequently distributed 
         For i=1 to x 
            Let z,q be two variables 
            z=prefi 
            If biz==minc 
               prefi=prefi+1 
               q=prefi 
               While biq is eliminated 
                  prefi=prefi+1 
                  q=prefi 
               Endwhile 
               z=biq 
               vz=vz+1 
            Endif 
         Endfor 
      Endelse 
   Endwhile 
   maxcth candidate is the winner 
Endfor 

  



Example: 
1. Theoretical Example :- 

In a particular constituency, the following is the election result. 

Candidate 
Ballot Details First Preference 

Votes a b c d e f g h 
Bob 2 4 2 1 4 1 3 4 2 
Sue 4 2 1 2 3 3 4 1 2 
Bill 1 3 4 3 1 4 1 2 3 
Matt 3 1 3 4 2 2 2 3 1 

Total 8 
Here majority is 5. Since, no candidate has a majority, the candidate with the 
minimum no. of votes Matt is eliminated and their voters (b) next valid preference is 
checked and subsequently distributed. Now, the tally stands at: 
 

Since, no candidate has a majority, the candidate with the minimum no. of votes Bob 
is eliminated and their voters (d & f) next valid preference is checked and 
subsequently distributed. Now, the tally stands at: 

Candidate Votes 
Sue 5 
Bill 3 

Since, Sue has got a majority, she is declared as the winner. 
 

2. Real World Example:- 
2019 Australian Federal Election 

Party 
First Preference 

Votes 
First Preference 

Vote % Seats Seat % 

Coalition 59,06,875 41.44 77 50.99 
Labor 47,52,160 33.34 68 45.03 
Greens 14,82,923 10.40 1 0.66 
Independents 4,79,836 3.37 3 1.99 
Others 16,31,599 11.45 2 1.33 

Total 1,42,53,393 100.00 151 100.00 
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Gallagher Index: 
 

 
Effective No. of Parties: 
We assume that all independent candidates are individual separate parties. 

Party Seats(s) (𝒔 ∑ 𝒔⁄ )𝟐 

Coalition 77 0.2600324547 
Labor 68 0.2027981229 
Greens 1 0.0000438577 
KAP 1 0.0000438577 
Centre Alliance 1 0.0000438577 
Independents 3 3×0.0000438577 

Total(∑) 151 0.46309 
𝟏
∑(𝒔 ∑ 𝒔⁄ )

𝟐⁄  2.16 

Issues: 
1. This system does not solve the problem of disproportionality. As such, it repeats most 

of the flaws of the FPTP system that arise due to disproportionality. 
2. In the case of Australia, only a fully ranked ballot is considered valid. So, voters are 

forced to give a ranking to all the candidates on the ballot, many of whom they might 
not even know. This causes the phenomenon of donkey voting, where the voter ranks 
the candidates based on the order they appear on the ballot itself. 

3. The current system of EVMs in India would have to be significantly altered, if not 
outright disbanded, to accommodate such a system. 

4. From a voter’s perspective, changing from FPTP to IRV would completely change the 
way one votes. There needs to be a sustained awareness and educational campaign 
about the changes in the system, as an unaware voter may get confused in the 
transition, before we can even think of implementing such a system. 

VI.   PROPORTIONAL ELECTORAL SYSTEMS 

Proportional representation is the most widely used electoral system for national legislatures, 
with the parliaments of over eighty countries elected by various forms of the system. The 
essence of such systems is that all votes contribute to the result—not just a plurality, or a 
bare majority—and that the system produces mixed, balanced representation reflecting how 
votes are cast. Some examples of such a system are partly-list proportional system, mixed 
member proportional system, etc. 

  

Party First Preference 
Vote % 

Seat % Difference Difference 
Squared 

Coalition 41.44 50.99 -9.55 91.2025 
Labor 33.34 45.03 -11.69 136.6561 
Greens 10.40 0.66 9.74 94.8676 
Independents 3.37 1.99 1.38 1.9044 
Others 11.45 1.33 10.12 102.4144 

Total 427.045 
Total/2 213.5225 

Square Root of (Total/2) 14.61 



Closed List and Open List 

In a closed list systems, each political party has pre-decided who will receive the seats 
allocated to that party in the elections, so that the candidates positioned highest on this list 
tend to always get a seat in the parliament while the candidates positioned very low on the 
closed list will not. Voters vote only for the party, not for individual candidates. 

An open list describes any variant of a party-list where voters have at least some influence on 
the order in which a party's candidates are elected. Open list can be anywhere from “partially 

open”, where a candidate can move up a predetermined list only with a certain number of 

votes, to “completely open”, where the order of the list completely depends on the number of 
votes each individual candidate gets. 

Allocation of Seats 

It is often unusual that parties get the exact no. of seats that they are eligible to, mostly due to 
the fact that it might be a fractional number. To convert these fractions into whole numbers, 
we use several methods, some of which are: 

1. D’Hondt Method – It belongs to the class of highest-averages methods. After all the 
votes have been tallied, successive quotients are calculated for each party. The party 
with the largest quotient wins one seat, and its quotient is recalculated. This is 
repeated until the required number of seats is filled. The formula for the quotient is as 
follows. 

quot =
𝑉

𝑠 + 1
 

2. Webster/Sainte-Laguë Method – It also belongs to the class of highest-averages 
methods. The D'Hondt method favours larger parties while the Webster/Sainte-Laguë 
method doesn't. The Webster/Sainte-Laguë method is generally seen as more 
proportional, but risks an outcome where a party with more than half the votes can 
win fewer than half the seats. 
After all the votes have been tallied, successive quotients are calculated for each 
party. The formula for the quotient is as follows. 

quotient =
𝑉

2𝑠 + 1
 

A. Party-List Proportional System 

Party-list proportional representation is a subset of proportional electoral systems in which 
multiple candidates are elected through their position on an electoral list. In these systems, 
parties make lists of candidates to be elected, and seats are distributed to each party in 
proportion to the number of votes the party receives. 

Countries that use party-list proportional system: Netherlands, Israel. 

Algorithm for Dutch system: 
We assume that all votes cast are valid 
Let n be the total no. of seats 
Let tv be the total no. of votes cast 
Let x be the total no. of parties participating in the election 
Let s be an array of size x which contains the total no. of seats won by each party, where all 
elements have initial value 0 
Let v be an array of size x which contains the total no. of votes received by each party 



threshold=tv/n 
rem=n 
For i=1 to x 
   If vi>=threshold 
      si=floor(vi/threshold) 
      res=res-si 
   Endif 
Endfor 
Let q be an array of size x which contains the respective quotient value for each party, where 
all elements have initial value 0 
While res>0 
   Let maxq be a variable with initial value 0 
   Let now be a variable 
   For i=1 to x 
      If vi>=threshold 
         qi=vi/(si+1) 
         If qi>maxq 
            maxq=qi 

            now=i 
         Endif 
      Endif 
   Endfor 
   snow=snow+1 
   res=res-1 
Endwhile 
Let c be the total no. of candidates in each party that are participating in the election 
Let p be a two dimensional array of size x,c which contains the total no. of votes received by 
each individual candidate of the respective party 
For i=1 to x 
   If si>0 
      fillseat=0 
      For j=1 to c 
         While fillseat<si 
            If pij>=(threshold/4) 
               pij

th candidate is elected 
               fillseat=fillseat+1 
            Endif 
         Endwhile 
      Endfor 
      If fillseat<si 
         For j=1 to c 
            While fillseat<si 
               If pij

th candidate is already elected 
                 continue 
               Endif 
               Else 
                  pij

th candidate is elected 
                  fillseat=fillseat+1 
               Endelse 
            Endwhile 



         Endfor 
      Endif 
   Endif 
Endfor 

Example: 
1. Theoretical Example :- 

Let there be 60 seats in total and the total valid votes cast be 12,000. Thus, the 
threshold value for parliamentary representation for a party would be 200 votes. Let 
the total no. parties participating in the election be 9. The following is the result of the 
election. 

Party Votes Vote % 
Direct 
Seats 

Residual 
Seats 

Total 
Seats Seat % 

A 1160 9.67 5 1 6 10.00 
B 4088 34.07 20 1 21 35.00 
C 763 6.36 3 1 4 6.67 
D 2525 21.04 12 1 13 21.67 
E 1663 13.86 8 0 8 13.33 
F 406 3.38 2 0 2 3.33 
G 194 1.61 0 0 0 0.00 
H 203 1.69 1 0 1 1.67 
I 998 8.32 4 1 5 8.33 
Total 12000 100.00 55 5 60 100.00 

Since, G is below the threshold value, it is not liable to win any seats. All the other 
parties that are liable to get seats get so in a two-step manner. Each party’s no. of 

votes is divided by the threshold value and rounded down to the nearest integer to 
give an initial no. of seats. In this example, the initial no. of seats received by A is 
calculated as 1160/200=5.8 which is rounded down to 5 direct seats. Similarly, all 
other parties are allocated their direct seats in this way. Next, we allocate the residual 
seats, which in this case happen to be 5, by the D’Hondt method. Initially, the 

respective quotient stands at 
Party Quotient 

A 193.33 
B 194.67 
C 190.75 
D 194.23 
E 184.78 
F 135.33 
H 101.50 
I 199.60 

So, I gets the 1st residual seat. I now has 5 seats. 
For allocating the 2nd residual seat, we recalculate the quotient for each of the parties. 
The respective quotient stands at 

  



 
Party Quotient 

A 193.33 
B 194.67 
C 190.75 
D 194.23 
E 184.78 
F 135.33 
H 101.50 
I 166.33 

So, B gets the 2nd residual seat. B now has 21 seats. 
Thus, all the residual seats are allocated in the same manner. 
 
Now, we have to check which candidates of their respective party are elected. Let 
there be 7 candidates running in this election for party C. Their respective vote count 
is as follows. 

Candidate Votes 
CA 40 
CB 315 
CC 25 
CD 48 
CE 33 
CF 258 
CG 44 

Total 763 
Party C has been allocated 4 seats. For individual candidates to supersede the 
hierarchy of the party list and get directly elected, they need to get (threshold/4=)50 
votes on their own. Such candidates are CB and CF and they are elected before 
anybody else on the party list. 
Next, the remaining 2 seats are allocated as per the hierarchy set by the party list. We 
start from the top and see that candidates CA and CC are the two topmost candidates 
that are yet to be elected. The remaining 2 seats are won by them. 
Thus, all individual candidates from their respective party list are elected in the same 
manner. 
 

  



2. Real World Example :- 
 

 

 

  

Votes
VVD
D66
PVV
CDA
SP
PvdA
GL
FvD
PvdD
CU
Volt
JA21
SGP
DENK
Others

Seats
VVD
D66
PVV
CDA
SP
PvdA
GL
FvD
PvdD
CU
Volt
JA21
SGP
DENK
Others

2021 Dutch General Election 
Party Votes Vote % Seats Seat % 

VVD 22,79,130 21.87 34 22.67 
D66 15,65,861 15.02 24 16.00 
PVV 11,24,482 10.79 17 11.34 
CDA 9,90,601 9.50 15 10.00 
SP 6,23,371 5.98 9 6.00 
PvdA 5,97,192 5.73 9 6.00 
GL 5,37,308 5.15 8 5.33 
FvD 5,23,083 5.02 8 5.33 
PvdD 3,99,750 3.84 6 4.00 
CU 3,51,275 3.37 5 3.33 
Volt 2,52,480 2.42 3 2.00 
JA21 2,46,620 2.37 3 2.00 
SGP 2,15,249 2.06 3 2.00 
DENK 2,11,237 2.03 3 2.00 
Others 5,05,213 4.85 3 2.00 

Total 1,04,22,852 100.00 150 100.00 



Gallagher Index: 
Party Vote % Seat % Difference Difference Squared 

VVD 21.87 22.67 -0.80 0.64 
D66 15.02 16.00 -0.98 0.9604 
PVV 10.79 11.34 -0.55 0.3025 
CDA 9.50 10.00 -0.50 0.25 
SP 5.98 6.00 -0.02 0.0004 
PvdA 5.73 6.00 -0.27 0.0729 
GL 5.15 5.33 -0.18 0.0324 
FvD 5.02 5.33 -0.31 0.0961 
PvdD 3.84 4.00 -0.16 0.0256 
CU 3.37 3.33 0.04 0.0016 
Volt 2.42 2.00 0.42 0.1764 
JA21 2.37 2.00 0.37 0.1369 
SGP 2.06 2.00 0.06 0.0036 
DENK 2.03 2.00 0.03 0.0009 
Others 4.85 2.00 2.85 8.1225 

Total 10.8222 
Total/2 5.4111 

Square Root of (Total/2) 2.33 
 
Effective No. of Parties: 

Party Seats(s) (𝒔 ∑ 𝒔⁄ )𝟐 

VVD 34 0.0513777778 
D66 24 0.0256000000 
PVV 17 0.0128444444 
CDA 15 0.0100000000 
SP 9 0.0036000000 
PvdA 9 0.0036000000 
GL 8 0.0028444444 
FvD 8 0.0028444444 
PvdD 6 0.0016000000 
CU 5 0.0011111111 
Volt 3 0.0004000000 
JA21 3 0.0004000000 
SGP 3 0.0004000000 
DENK 3 0.0004000000 
50+ 1 0.0000444444 
BBB 1 0.0000444444 
BIJ1 1 0.0000444444 
Total(∑) 150 0.11716 

𝟏
∑(𝒔 ∑ 𝒔⁄ )

𝟐⁄  8.54 

  



Issues: 
1. Since the entire country is converted into a single constituency, elected members 

effectively do not have any constituency link. 
2. It is not practical to convert a country the size of India into a single constituency. 
3. Due to the threshold being too low, there is excessive fragmentation. This allows too 

many parties into the legislature which affects its stability. 
4. The current system of EVMs in India would have to be significantly altered, if not 

outright disbanded, to accommodate such a system. 
5. From a voter’s perspective, changing from FPTP to party-list proportional system 

would completely change the way one votes. There needs to be a sustained awareness 
and educational campaign about the changes in the system, as an unaware voter may 
get confused in the transition, before we can even think of implementing such a 
system. 

B. Mixed Member Proportional (MMP) System 

Mixed-member proportional representation is an electoral system in which voters get two 
votes: one to decide the representative for their single-seat constituency, and one for a 
political party. Seats in the legislature are filled first by the successful constituency 
candidates, and second, by party candidates based on the percentage of nationwide or region-
wide votes that each party received. 

Countries that use MMP system: Germany, New Zealand. 

Algorithm for New Zealand system: 
We assume that all votes cast are valid 
Let es be the total no. of electorate seats 
Let ls be the total no. of list seats 
Let x be the total no. of parties contesting the election 
Let p be an array of size x which contains the total no. of seats won by each party, where all 
elements have initial value 0 
For k=1 to es 
   Let n be the total no. of candidates participating in the 
   constituency 
   Let v1 be an array of size n which contains the total no. of 
   electorate votes received by each candidate, where each candidate 
   is also a member of a corresponding party in p 
   Let max,w be variables with initial value 0 
   For i=1 to n 
      If v1i>max 
         max=v1i 
         w=i 
      Endif 
   Endfor 
   wth candidate is the winner 
   pw=pw+1 
Endfor 
Let v2 be an array of size x which contains the total no. of party votes received by each party 



Let t be the total no. of party votes cast 
threshold=(5/100)*t 
Let q be an array of size x which contains the respective quotient value for each party, where 
all elements have initial value 0 
While ls>0 
   Let maxq be a variable with initial value 0 
   Let now be a variable 
   For i=1 to x 
      If ((v2i>=threshold) || (pi>0)) 
         qi=v2i/(2*pi+1) 
         If qi>maxq 
            maxq=qi 

            now=i 
         Endif 
      Endif 
   Endfor 
   pnow=pnow+1 
   ls=ls-1 
Endwhile 

Example: 
1. Theoretical Example :- 

Let there be 60 electorate seats and 40 list seats, and the total no. of party votes cast 
be 20,000. Thus, the threshold will be 1,000 votes. The electorate seats are distributed 
among the parties in exactly the same way as discussed above in the FPTP system. 

Party Electorate 
Seats 

Party 
Vote 

Vote % List 
Seats 

Total 
Seats 

Seat % 

A 24 8,000 40.00 1 25 41.67 
B 9 6,000 30.00 10 19 31.67 
C 2 4,800 24.00 13 15 25.00 
D 0 800 4.00 0 0 0.00 
E 1 400 2.00 0 1 1.67 
Total 36 20,000 100.00 24 60 100.00 

Since, D has neither won any electorate seats nor reached the threshold value, it is not 
qualified to get any list seats. On the other hand, E is qualified to get list seats even 
though it has not reached the threshold value as it has won 1 electorate seat. After 
allocation of all electorate seats, the allocation of list seats begins. We allocate the list 
seats by the Webster/Sainte-Laguë method. 
For allocating the 1st list seat, we calculate the quotient for each of the parties that are 
qualified to get list seats. The respective quotient stands at 

  



 
 

So, C gets the 1st list seat. C now has 3 seats. 
For allocating the 2nd list seat, we recalculate the quotient for each of the parties that 
are qualified to get list seats. The respective quotient stands at 

Party Quotient 
A 163.27 
B 315.79 
C 685.71 
E 133.33 

So, C gets the 2nd list seat. C now has 4 seats. 
This is continued until there are no list seats left to allocate. 
 

2. Real World Example:- 
2020 New Zealand General Election 

Party Electorate 
Votes 

Electorate 
Vote % 

Electorate 
Seats 

Party 
Votes 

Party 
Vote % 

List 
Seats 

Total 
Seats 

Seat % 

Labour 13,57,501 48.07 46 14,43,545 50.01 19 65 54.17 
National 9,63,845 34.13 23 7,38,275 25.58 10 33 27.50 
Green 1,62,245 5.74 1 2,26,757 7.85 9 10 8.33 
ACT 97,697 3.46 1 2,19,031 7.59 9 10 8.33 
NZ First 30,209 1.07 0 75,020 2.60 0 0 0.00 
TOP 25,181 0.89 0 43,449 1.51 0 0 0.00 
MP 60,837 2.15 1 33,630 1.16 1 2 1.67 
Others 1,26,683 4.49 0 1,06,713 3.70 0 0 0.00 

Total 28,24,198 100.00 72 28,86,420 100.00 48 120 100.00 
 

 

  

Party Votes

Labour

National

Green

ACT

NZ First

TOP

MP

Others

Seats

Labour

National

Green

ACT

MP

Party Quotient 
A 163.27 
B 315.79 
C 960 
E 133.33 



Gallagher Index: 

Party 
Party 

Vote % Seat % Difference 
Difference 
Squared 

Labour 50.01 54.17 -4.16 17.3056 
National 25.58 27.50 -1.92 3.6864 
Green 7.85 8.33 -0.48 0.2304 
ACT 7.59 8.33 -0.74 0.5476 
NZ First 2.60 0.00 2.6 6.76 
TOP 1.51 0.00 1.51 2.2801 
MP 1.16 1.67 -0.51 0.2601 
Others 3.70 0.00 3.7 13.69 

Total 44.7602 
Total/2 22.3801 

Square Root of (Total/2) 4.73 
 
Effective No. of Parties: 

Party Seats(s) (𝒔 ∑ 𝒔⁄ )𝟐 

Labour 65 0.2934027778 
National 33 0.0756250000 
Green 10 0.0069444444 
ACT 10 0.0069444444 
MP 2 0.0002777778 
Total(∑) 120 0.38319 

𝟏
∑(𝒔 ∑ 𝒔⁄ )

𝟐⁄  2.61 

Issues: 
1. To offset the disproportionality of constituency seats, we need a large proportion of 

list seats. In Germany, the ratio is 1:1, i.e., they have 299 constituency seats and 299 
list seats. In New Zealand’s case, the ratio is 3:2, i.e., there are 72 constituency seats 
and 48 list seats. If such a system is applied to India, this will lead to an extremely 
large legislature, the cost of maintaining which will be very high, and its effectiveness 
greatly hampered. 

2. The big parties can game the system by using decoy lists. They can create a list under 
a different banner and instruct their voters to vote for the decoy list so as to maximize 
their seat winning chances. This has happened in the 2007 Lesotho general election, 

VII.   SEMI-PROPORTIONAL ELECTORAL SYSTEMS 

Semi-proportional representation characterizes multi-winner electoral systems which allow 
representation of minorities, but are not intended to reflect the strength of the competing 
political forces in close proportion to the votes they receive. Semi-proportional voting 
systems can be regarded as compromises between forms of proportional representation such 
as party-list PR, and majoritarian systems such as first-past-the-post voting. Some examples 
of such a system are parallel voting system, single non-transferable vote system, etc. 

  



A. Parallel Voting System 

Parallel voting is a type of mixed electoral system in which representatives are voted into a 
single chamber using two or more different systems, most often first past the past 
voting (FPTP) with party-list proportional system (PR). It differs from MMP in that the multi 
member PR seats are not allocated with the winners of the single member constituencies in 
mind. Essentially, there occur two parallel elections to the legislature by two different 
electoral systems whose winners are not linked to each other. 

Countries that use parallel voting system: Japan, South Korea. 

Algorithm for Japanese system: 
We assume that all votes cast are valid 
Let smc be the total no. of single member fptp constituencies 
Let mmc be the total no. of multi member proportional constituencies 
For k=1 to smc 
   Let n be the total no. of candidates participating in the 
   constituency 
   Let v1 be an array of size n which contains the total no. of 
   votes received by each candidate 
   Let max,w be variables with initial value 0 
   For i=1 to n 
      If v1i>max 
         max=v1i 
         w=i 
      Endif 
   Endfor 
   wth candidate is the winner 
Endfor 
For k=1 to mmc 
   Let x be the total no. of seats in the constituency 
   Let n be the total no. of parties participating in the 
   constituency 
   Let p be an array of size n which contains the total no. of seats 
   won by each party, where all elements have initial value 0 
   Let v2 be an array of size n which contains the total no. of 
   votes received by each party 
   Let q be an array of size n which contains the respective 
   quotient value for each party, where all elements have initial 
   value 0 
   While x>0 
      Let maxq be a variable with initial value 0 
      Let now be a variable 
      For i=1 to n 
         qi=v2i/(pi+1) 
         If qi>maxq 
            maxq=qi 

            now=i 
         Endif 
      Endfor 
      pnow=pnow+1 



      x=x-1 
   Endwhile 
Endfor 

Example 

1. Theoretical Example :- 
Let there be a region which has 36single member constituencies and 1 multi member 
constituency with 24 seats. Let the total no. of votes cast be 20,000. The single 
member constituencies are distributed among the candidates/parties in exactly the 
same way as discussed above in the FPTP system. 

Party 
Single 

Member 
Seats 

Votes Vote % 
Multi 

Member 
Seats 

Total 
Seats 

Seat % 

A 24 8,000 40.00 10 34 56.67 
B 9 6,000 30.00 7 16 26.67 
C 2 4,800 24.00 6 8 13.33 
D 0 800 4.00 1 1 1.67 
E 1 400 2.00 0 1 1.67 
Total 36 20,000 100.00 24 60 100.00 

We allocate the multi member seats by the D’Hondt method. 
For allocating the 1st multi member seat, we calculate the quotient for each of the 
parties. Initially, the respective quotient stands at 
 

So, A gets the 1st multi member seat. 
For allocating the 2nd multi member seat, we recalculate the quotient for each of the 
parties. The respective quotient stands at 

Party Quotient 
A 4000 
B 6000 
C 4800 
D 800 
E 400 

So, B gets the 2nd multi member seat. 
This is continued until there are no multi member seats left to allocate. 

  

Party Quotient 
A 8000 
B 6000 
C 4800 
D 800 
E 400 



2. Real World Example:- 
2021 Japanese General Election 

Party 
FPTP Constituencies Proportional Constituencies Total 

Seats 
Seat % 

Votes Vote % Seats Votes Vote % Seats 

LDP 2,76,26,235 48.08 187 1,99,14,883 34.65 72 259 55.70 
CDP 1,72,15,621 29.96 57 1,14,92,095 20.00 39 96 20.64 
JIP 48,02,793 8.36 16 80,50,830 14.01 25 41 8.82 
NKP 8,72,931 1.52 9 71,14,282 12.38 23 32 6.88 
JCP 26,39,631 4.60 1 41,66,076 7.25 9 10 2.15 
DPP 12,46,812 2.17 6 25,93,396 4.51 5 11 2.37 
RS 2,48,280 0.43 0 22,15,648 3.86 3 3 0.64 
Others 28,04,729 4.88 13 19,18,769 3.34 0 13 2.80 

Total 5,74,57,032 100.00 289 5,74,65,979 100.00 176 465 100.00 
 

 

Gallagher Index: 

Party 
Proportional 

Constituency Vote % Seat % Difference 
Difference 
Squared 

LDP 34.65 55.70 -21.05 443.1025 
CDP 20.00 20.64 -0.64 0.4096 
JIP 14.01 8.82 5.19 26.9361 
NKP 12.38 6.88 5.50 30.25 
JCP 7.25 2.15 5.10 26.01 
DPP 4.51 2.37 2.14 4.5796 
RS 3.86 0.64 3.22 10.3684 
Others 3.34 2.80 0.54 0.2916 

Total 541.9478 
Total/2 270.9739 

Square Root of (Total/2) 16.46 
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Effective No. of Parties: 
We assume that all independent candidates are individual separate parties. 

Party Seats(s) (𝒔 ∑𝒔⁄ )𝟐 

LDP 259 0.3102370216 
CDP 96 0.0426222685 
JIP 41 0.0077743092 
NKP 32 0.0047358076 
JCP 10 0.0004624812 
DPP 11 0.0005596023 
RS 3 0.0000416233 
SDP 1 0.0000046248 
Independents 12 12×0.0000046248 
Total(∑) 465 0.36649 
𝟏
∑(𝒔 ∑ 𝒔⁄ )

𝟐⁄  2.73 

Issues: 
1. This system does not solve the problem of disproportionality. As such, it repeats most 

of the flaws of the FPTP system that arise due to disproportionality. 
2. Even with PR elements added onto the system, it does not prevent one party 

domination with minority support. Japan has been governed almost exclusively by a 
single party since 1955 under this system, with 1963 being the last time that they had 
majority support. 

3. For small parties to make an impact, there needs to be a large no. of seats available in 
the proportional portion. A large no. of proportional seats along with the single 
member constituencies may result in an extremely large legislature. 

VIII.   PROPOSED ELECTORAL SYSTEM 

We need to find a system that is proportional yet retains a constituency link. We must ensure 
that the legislature does not become excessively large. We must see to it that the 
proportionality does not lead to excessive fragmentation of the legislature. We must ensure 
that the parties do not game the system in any way, and it remains fair to large and small 
parties alike. Moreover, we must not make the voter confused; it must be a system that the 
average voter can easily understand and one that is built on what they are already comfortable 
with. 
Our proposed system does just that. 

Algorithm: 
We assume that all votes cast are valid 
Let c be the total no. of constituencies 
Let p be the total no. of parties participating in the election 
Let so be an array of size p which contains the total no. of seats won by each party overall, 
where all elements have initial value 0 
Let n be a variable with initial value 0 
For k=1 to c 
   Let ts be the total no. of seats in the constituency 
   Let tvc be the total no. of votes cast in the constituency 
   Let vc be an array of size p which contains the total no. of votes received by each party in 
   that constituency 
   threshold=(10/100)*tvc 



   Let sc be an array of size p which contains the total no. of seats won by each party in that 
   constituency, where all elements have initial value 0 
   Let q be an array of size p which contains the respective quotient value for each party, 
   where all elements have initial value 0 
   n=n+ts 
   While ts>0 
      Let maxq be a variable with initial value 0 
      Let now be a variable 
      For i=1 to p 
         If vci>=threshold 
            qi=vci/(2*sci+1) 
            If qi>maxq 
               maxq=qi 
               now=i 
            Endif 
         Endif 
      Endfor 
      scnow=scnow+1 
      sonow=sonow+1 
      ts=ts-1 
   Endwhile 
Endfor 
Let tvo be the total no. votes cast overall 
Let vo be an array of size p which contains the total no. of votes received by each party 
overall 
threshold=(5/100)*tvo 
Let q be an array of size p which contains the respective quotient value for each party, where 
all elements have initial value 0 
topup=(ceil) n/9 
While topup>0 
   Let maxq be a variable with initial value 0 
   Let now be a variable 
   For i=1 to p 
      If voi>=threshold 
         qi=voi/(2*soi+1) 
         If qi>maxq 
            maxq=qi 
            now=i 
         Endif 
      Endif 
   Endfor 
   sonow=sonow+1 
   topup=topup-1 
Endwhile 

  



Features: 
1. It is a proportional electoral system. 
2. It uses a closed party-list system. 
3. It converts single member constituencies into multi member constituencies wherever 

possible. 
4. The size of the multi member constituencies usually varies from 3 to 6. This ensures 

that there is some constituency link albeit a shared one and not an exclusive one. 
5. Seats are distributed at two levels: the constituency level and the top-up level. 
6. Seats are allocated using the Webster/Sainte-Laguë method at both levels. This 

ensures that there is some proportionality achieved at the constituency level. The 
D’Hondt method is not preferred as the proportionality offered by it in a constituency 

with 3 to 6 members is not enough. 
7. Seats are first allocated at the constituency level with the threshold being 10%. 
8. Seats are then allocated at the top-up level with the threshold being 5%. 
9. The top-up seats are there to ensure overall proportionality. There may be a situation 

where a party achieves 7% of the vote in all the constituencies. As such they are not 
going to win any constituency seats. In this situation, the top-up seats prevents a party 
whose support is not geographically concentrated to be penalised for it. 

10. The semi-proportionality achieved at the constituency level ensures that there is no 
need for a large no. of top-up seats to make the overall result proportional. 

11. The ratio of top-up seats to constituency seats under our system is 1:9. In comparison, 
the ratio of list seats to constituency seats under MMP is 1:1 in Germany and 2:3 in 
New Zealand. This means that we don’t need to expand the current sizes of our 

already existing legislatures by much to accommodate this system. 
12. In the election to the national legislature, the top-up seats may be distributed at the 

state level rather than on the overall national result so as to maintain the federal 
structure of the country. 

13. There is no need to change the EVMs to accommodate our proposed electoral system. 
14. From the perspective of a voter, there is almost no change in our electoral system 

when compared to the current FPTP system used in India. Here, voters also cast a 
single vote just as in the FPTP system, the only difference being that the vote is cast 
for a list of candidates of a party rather than a singular candidate of a party. This 
system differs from FPTP in how it translates votes into seats, but an average voter 
need not burden themselves with the calculation that goes behind it. As far as they are 
concerned, they need to vote once for their preferred party list, and that’s what matters 

for this system to work. 
15. Since voters vote only once, there is no space for parties to use decoy lists to game the 

system. 
 
Example: 

1. Theoretical Example :- 
Let there be a constituency that has to elect 5 members. Let the following be the 
election result in that constituency. 

Party Votes Vote % Seats Seat % 
A 8,000 28.57 1 20.00 
B 10,000 35.72 2 40.00 
C 3,000 10.71 1 20.00 
D 2,000 7.14 0 0.00 
E 5,000 17.86 1 20.00 
Total 28,000 100.00 5 100.00 



Since, D has got less than 10% of the vote in the constituency, which is the 
constituency threshold, it is not eligible to win any constituency seats. We allocate the 
constituency seats by the Webster/Sainte-Laguë method. 
For allocating the 1st constituency seat, we calculate the quotient for each of the 
parties that are qualified to get constituency seats. The respective quotient stands at 
 

So, B gets the 1st constituency seat. B now has 1 seat. 
For allocating the 2nd constituency seat, we recalculate the quotient for each of the 
eligible parties. The respective quotient stands at 

Party Quotient 
A 8000 
B 3333.33 
C 3000 
E 5000 

So, A gets the 2nd constituency seat. A now has 1 seat 
For allocating the 3rd constituency seat, we recalculate the quotient for each of the 
eligible parties. The respective quotient stands at 
 

So, E gets the 3rd constituency seat. E now has 1 seat. 
For allocating the 4th constituency seat, we recalculate the quotient for each of the 
eligible parties. The respective quotient stands at 

Party Quotient 
A 2666.67 
B 3333.33 
C 3000 
E 1666.67 

So, B gets the 4th constituency seat. B now has 2 seats. 
For allocating the 5th constituency seat, we recalculate the quotient for each of the 
eligible parties. The respective quotient stands at 

Party Quotient 
A 2666.67 
B 2000 
C 3000 
E 1666.67 

So, C gets the 5th constituency seat. C now has 1 seat. 
Thus, all the seats for that particular constituency have been distributed. 
Let there be 10 such 5-member constituencies. Therefore, total no. of constituency 
seats will be 50. Let us assume that voters would vote in the same manner as above in 
all the constituencies. The total no. of top-up seats will be (50/9=5.56=)6. The 
following would be the overall result of the election. 
 

Party Quotient 
A 8000 
B 10000 
C 3000 
E 5000 

Party Quotient 
A 2666.67 
B 3333.33 
C 3000 
E 5000 



Party Votes Vote % 
Constituency 

Seats 
Top-up 
Seats Total Seats Seat % 

A 80,000 28.57 10 3 13 23.21 
B 1,00,000 35.72 20 0 20 35.71 
C 30,000 10.71 10 0 10 17.86 
D 20,000 7.14 0 3 3 5.36 
E 50,000 17.86 10 0 10 17.86 
Total 2,80,000 100.00 50 6 56 100.00 

Since no party has got less than 5% of the vote, which is the top-up threshold, all 
parties are eligible to win top-up seats. We allocate the top-up seats by the 
Webster/Sainte-Laguë method. 
For allocating the 1st top-up seat, we calculate the quotient for each of the parties. The 
respective quotient stands at 
 

So, D gets the 1st top-up seat. D now has 1 seat. 
For allocating the 2nd top-up seat, we recalculate the quotient for each of the parties. 
The respective quotient stands at 
 

So, D gets the 2nd top-up seat. D now has 2 seats. 
For allocating the 3rd top-up seat, we recalculate the quotient for each of the parties. 
The respective quotient stands at 
 

So, D gets the 3rd top-up seat. D now has 3 seats. 
For allocating the 4th top-up seat, we recalculate the quotient for each of the parties. 
The respective quotient stands at 
 

So, A gets the 4th top-up seat. A now has 11 seats. 
For allocating the 5th top-up seat, we recalculate the quotient for each of the parties. 
The respective quotient stands at 

Party Quotient 
A 3809.52 
B 2439.02 
C 1428.57 
D 20000 
E 2380.95 

Party Quotient 
A 3809.52 
B 2439.02 
C 1428.57 
D 6666.67 
E 2380.95 

Party Quotient 
A 3809.52 
B 2439.02 
C 1428.57 
D 4000 
E 2380.95 

Party Quotient 
A 3809.52 
B 2439.02 
C 1428.57 
D 2857.14 
E 2380.95 



 

So, A gets the 5th top-up seat. A now has 12 seats. 
For allocating the 6th top-up seat, we recalculate the quotient for each of the parties. 
The respective quotient stands at 
 

So, A gets the 6th top-up seat. A now has 13 seats. 
We see that C has got disproportionately more seats, which has happened at the 
expense of A and D, otherwise the result has been proportional. This is due to the 
beneficial seat share of C at the constituency level, which has been exacerbated due to 
our assumption that voters vote in the exact same way in all the constituencies. This 
might be possible in the real world too, but is quite improbable. 
 

2. Real World Example :- 
We conduct the 2022 Punjab legislative election according to our proposed system. 
We assume that voters would vote in the exact same manner in which they voted in 
the actual election. 
There are 117 constituency seats. So, the no. of top-up seats will be (117/9=)13. So, 
the total no. of seats will be increased to 130. 
We need to convert the single member constituencies into multi member 
constituencies. The following is the result of the conversion. 

District 
Single Member 
Constituency 

Winner acc. to 
FPTP System 

Multi Member 
Constituency 

Winners acc. to 
Proposed System 

Pathankot 
Sujanpur INC 

Pathankot 
3 members 

INC = 1 
NDA = 1 
AAP = 1 

Bhoa AAP 
Pathankot NDA 

Gurdaspur 

Gurdaspur INC 
Gurdaspur I 
4 members 

INC = 2 
AAP = 1 
SAD+ = 1 

Dina Nagar INC 
Qadian INC 
Batala AAP 
Sri Hargobindpur AAP 

Gurdaspur II 
3 members 

SAD+ = 1 
INC = 1 
AAP = 1 

Fatehgarh Churian INC 
Dera Baba Nanak INC 

  

Party Quotient 
A 3478.26 
B 2439.02 
C 1428.57 
D 2857.14 
E 2380.95 

Party Quotient 
A 3200 
B 2439.02 
C 1428.57 
D 2857.14 
E 2380.95 



Amritsar 

Ajnala AAP 

Amritsar I 
5 members 

AAP = 2 
SAD+ = 2 
INC = 1 

Rajasansi INC 
Majitha SAD+ 
Jandiala AAP 
Amritsar North AAP 
Amritsar West AAP 

Amritsar II 
5 members 

AAP = 3 
INC = 1 
SAD+ = 1 

Amritsar Central AAP 
Amritsar East AAP 
Amritsar South AAP 
Attari AAP 

Tarn Taran 

Tarn Taran AAP 
Tarn Taran 
4 members 

AAP = 2 
SAD+ = 1 
INC = 1 

Khem Karan AAP 
Patti AAP 
Khadoor Sahib AAP 

Amritsar Baba Bakala AAP 
Amritsar III 
1 member 

AAP = 1 

Kapurthala 

Bholath INC 
Kapurthala 
4 members 

INC = 2 
AAP = 1 
SAD+ = 1 

Kapurthala INC 
Sultanpur Lodhi Others 
Phagwara INC 

Jalandhar 

Phillaur INC 

Jalandhar I 
5 members 

INC = 2 
AAP = 2 
SAD+ = 1 

Nakodar AAP 
Shahkot INC 
Kartarpur AAP 
Jalandhar West AAP 
Jalandhar Central AAP 

Jalandhar II 
4 members 

INC = 1 
AAP = 1 
NDA = 1 
SAD+ = 1 

Jalandhar North INC 
Jalandhar Cantt. INC 
Adampur INC 

Hoshiarpur 

Mukerian NDA 
Hoshiarpur I 
4 members 

AAP = 1 
INC = 1 
SAD+ = 1 
NDA = 1 

Dasuya AAP 
Urmar AAP 
Sham Chaurasi AAP 
Hoshiarpur AAP 

Hoshiarpur II 
3 members 

AAP = 1 
INC = 1 
SAD+ = 1 

Chabbewal INC 
Garshankar AAP 

S.B.S. Nagar 
Banga SAD+ 

S.B.S. Nagar 
3 members 

SAD+ = 1 
AAP = 1 
INC =1 

Nawan Shehr SAD+ 
Balachaur AAP 

Rupnagar 
Anandpur Sahib AAP 

Rupnagar 
3 members 

AAP = 2 
INC = 1 

Rupnagar AAP 
Chamkaur Sahib AAP 

S.A.S. Nagar 
Kharar AAP S.A.S. Nagar I 

2 members 
AAP = 1 
INC = 1 S.A.S. Nagar AAP 

Fatehgarh Sahib 
Bassi Pathana AAP 

Fatehgarh Sahib 
3 members 

AAP = 2 
INC = 1 

Fatehgarh Sahib AAP 
Amloh AAP 

  



Ludhiana 

Khanna AAP 

Ludhiana I 
5 members 

AAP = 3 
INC = 1 
SAD+ = 1 

Samrala AAP 
Sahnewal AAP 
Ludhiana East AAP 
Ludhiana South AAP 
Atam Nagar AAP 

Ludhiana II 
4 members 

AAP = 2 
INC = 1 
NDA = 1 

Ludhiana Central AAP 
Ludhiana West AAP 
Ludhiana North AAP 
Gill AAP 

Ludhiana III 
5 members 

AAP = 3 
INC = 1 
SAD+ = 1 

Payal AAP 
Dakha SAD+ 
Raikot AAP 
Jagraon AAP 

Moga 

Nihal Singhwala AAP 
Moga 
4 members 

AAP = 2 
SAD+ =1 
INC = 1 

Bhagha Purana AAP 
Moga AAP 
Dharamkot AAP 

Firozpur 

Zira AAP 
Firozpur 
4 members 

AAP = 2 
SAD+ = 1 
INC= 1 

Firozpur City AAP 
Firozpur Rural AAP 
Guru Har Sahai AAP 

Fazilka 

Jalalabad AAP 
Fazilka 
4 members 

AAP = 1 
INC = 1 
SAD+ = 1 
NDA = 1 

Fazilka AAP 
Abohar INC 
Ballauna AAP 

Sri Muktsar Sahib 

Lambi AAP 
Sri Muktsar Sahib 
4 members 

AAP = 2 
SAD+ = 1 
INC = 1 

Gidderbaha INC 
Malout AAP 
Muktsar AAP 

Faridkot 
Faridkot AAP 

Faridkot 
3 members 

AAP = 1 
SAD+ = 1 
INC = 1 

Kotkapura AAP 
Jaitu AAP 

Bathinda 

Rampura Phul AAP 

Bathinda 
6 members 

AAP = 3 
SAD+ = 2 
INC = 1 

Bhucho Mandi AAP 
Bathinda Urban AAP 
Bathinda Rural AAP 
Talwandi Sabo AAP 
Maur AAP 

Mansa 
Mansa AAP 

Mansa 
3 members 

AAP = 1 
SAD+ = 1 
INC = 1 

Sardulgarh AAP 
Budhlada AAP 

  



Sangrur 

Lehra AAP 
Sangrur I 
4 members 

AAP = 2 
SAD+ = 1 
INC = 1 

Dirba AAP 
Sunam AAP 
Bhadaur AAP 
Barnala AAP 

Sangrur II 
3 members 

AAP = 2 
INC = 1 

Mehal Kalan AAP 
Malerkotla AAP 

Barnala 
Amargarh AAP 

Barnala 
3 members 

AAP = 2 
INC = 1 

Dhuri AAP 
Sangrur AAP 

Patiala 
Nabha AAP 

Patiala I 
3 members 

AAP = 2 
INC = 1 

Patiala Rural AAP 
Rajpura AAP 

S.A.S. Nagar Dera Bassi AAP 
S.A.S. Nagar II 
1 member 

AAP = 1 

Patiala 

Ghanaur AAP 

Patiala II 
5 members 

AAP = 3 
SAD+ = 1 
INC = 1 

Sanour AAP 
Patiala AAP 
Samana AAP 
Shutrana AAP 

Thus, we have converted 117 single member constituencies into 32 multi member 
constituencies consisting of a total of 117 seats. 

The overall result of the election under our proposed system would be as follows. 

Party Votes Vote % Constituency 
Seats 

Top-up 
Seats 

Total 
Seats 

Seat % 

AAP 65,38,783 42.01 55 3 58 44.62 
INC 35,76,684 22.98 33 0 33 25.38 
SAD+ 31,36,518 20.15 24 4 28 21.54 
NDA 12,03,835 7.74 5 6 11 8.46 
Others 9,97,592 6.41 0 0 0 0.00 
NOTA 1,10,320 0.71 0 0 0 0.00 

Total 1,55,63,732 100.00 117 13 130 100.00 
 

 

Votes

AAP

INC

SAD+

NDA

Others

NOTA

Seats

AAP

INC

SAD+

NDA



Gallagher Index: 
Party Vote % Seat % Difference Difference Squared 

AAP 42.01 44.62 -2.61 6.8121 
INC 22.98 25.38 -2.4 5.76 
SAD+ 20.15 21.54 -1.39 1.9321 
NDA 7.74 8.46 -0.72 0.5184 
Others 6.41 0.00 6.41 41.0881 
NOTA 0.71 0.00 0.71 0.5041 

Total 56.6148 
Total/2 28.3074 

Square Root of (Total/2) 5.32 
The Gallagher index is reduced from 29.55 in FPTP system to 5.32 in our proposed system. 

Effective No. of Parties: 

Party Seats(s) (𝒔 ∑ 𝒔⁄ )𝟐 

AAP 58 0.1990532544 
INC 33 0.0644378698 
SAD+ 28 0.0463905325 
NDA 11 0.0071597633 
Total(∑) 130 0.31704 

𝟏
∑(𝒔 ∑ 𝒔⁄ )

𝟐⁄  3.15 

The effective no. of parties increases from 1.55 in FPTP system to 3.15 in our proposed 
system. 

IX.   RESULT 

Electoral 
System Type Preferential List Threshold 

List 
Allocation 

Method 

Gallagher 
Index ENP 

FPTP Majoritarian No - - - High Normal 
Two Round Majoritarian No - - - High Normal 
IRV Majoritarian Yes - - - High Normal 
Party-List Proportional No Open 0.67% D’Hondt Low Excessive 

MMP Proportional No Closed 5% 
Webster/Sainte
-Laguë 

Low Normal 

Parallel 
Voting 

Semi-
proportional 

No Closed None D’Hondt Medium Normal 

Proposed 
System 

Proportional No Closed 
10% 
(constituency) 
5% (top-up) 

Webster/Sainte
-Laguë 

Low Normal 

 
  



X.   DISCUSSION 

The main task for a proportional electoral system is to find the perfect balance between 
proportionality and fragmentation. Exclusively prioritising on increasing proportionality 
might lead to excessive fragmentation, while exclusively prioritising on reducing 
fragmentation might make the system not proportional at all. Our proposed electoral system 
is able to do so with help of a sizable but not insurmountable threshold. And, overall, it is 
able to maintain the fairness that is the essential feature of all proportional systems. 

XI.   CONCLUSION 

Different electoral systems serve different purposes. Majoritarian systems provide clear 
winners and losers and often result in single majority governments, but fail to fairly express 
the choice of the electorate. Proportional systems, on the other hand, are quite adept at 
representing all the different choices of the electorate fairly, but if the threshold is too low it 
might lead to excessive fragmentation. Semi-proportional systems are supposed to be the 
middle ground between the two, yet it still favours the big establishment parties over small or 
new ones, thus making it unfair. 

Not all systems might be compatible with India. Some systems, no matter how theoretically 
perfect they might be, are just not suitable to be implemented in a country as large and 
diverse as India. Thus, taking into consideration all the factors, our proposed system performs 
quite well. It offers proportionality without excessive fragmentation. It retains constituencies 
albeit of a larger district magnitude than the current system. And, most importantly, it retains 
the basic framework of how the votes are cast as compared to the current system in India. As 
far as voting is concerned, there is no need for any change in that department if we are to 
replace the current FPTP system with our proposed electoral system. An average voter who 
has voted before in Indian elections if told to cast a vote in our proposed system can do so 
without any confusion or hesitation. 

If at all our system is to be implemented in India, we recommend to first try it out at the state 
level. Start with a state, then gradually extend it to other states, and finally implement it in all 
the states. Only after that should the system be used for electing the national legislature. 

XII.   FUTURE WORK 

The formulation of new electoral systems and the improvement of existing systems is a never 
ending process. Although, the discussion on electoral system is not a popular issue and 
neither is there any popular demand for electoral reform, other than the odd article from ex 
election commissioners and other intellectuals, it is only time that the electorate gets wary of 
the inherent unfairness of the current FPTP system. As such, this issue is kind of a dormant 
volcano. Already, there has been parliamentary committees that are being set up to check the 
viability of the FPTP system in our diverse democracy. It should be expected that the issue of 
electoral reform is only going to get more important in the near future. 
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XIV. APPENDIX 

CODE: 

FPTP 

 

#Let us consider a single constituency.  

#Let n be the total no. of candidates participating in the constituency 

#Let arr be an array of size n which contains the total no. of votes received by each candidate 

def FPTP(n,arr): 

max=0 

winner=0 

for i in range(n): 

if arr[i]>max: 

max=arr[i] 

winner=I 

return winner 

 

 

def main(): 

n=eval(input("Enter the number of candiates: ")) 

arr=[] 

for i in range(n): 

vote=eval(input(f"Enter the number of votes, candiate {i+1} get: ")) 

arr.append(vote) 

winner=FPTP(n,arr) 

parcentage=(arr[winner]/sum(arr))*100 

print(f"The {winner+1}th candidate is the winner of the constituency with {parcentage}% vote 

share.") 

 

if __name__ == "__main__": 

main() 

 

Two Round System 

 

#Let consider just one constituency 

#Let n be the total no. of eligible voters in the constituency 

#Let m be the total no. of votes cast. 

#Let x be the total no. of candidates participating in the constituency 

#Let arr1 be an array of size x which contains the total no. of votes received by each candidate 

 

def TRS(x,m,n,arr): 

q=0 

eligible_for_2nd=[] 

for i in range(x): 



if ((arr[i]>((1/2)*m)) and (arr[i]>=((1/4)*n))): 

print(f"The winner is {i+1}th candidate.") 

return eligible_for_2nd 

elif(arr[i]>=((1/8)*n)): 

q=q+1 

eligible_for_2nd.append(i) 

 

if(q>=2): 

print(f"Hold second round of elections where only {q} candidate will participate and the rest are 

eliminated.") 

return eligible_for_2nd 

else: 

if(len(eligible_for_2nd))!=0: 

eligible_for_2nd.pop(0) 

max=0 

max_2=0 

max_c=0 

max_2_c=0 

for i in range(x): 

if(max<arr[I]): 

max_c=I 

max=arr[i] 

eligible_for_2nd.append(max_c) 

for i in range(x): 

if(arr[i]==max): 

continue 

elif(max_2<arr[i]): 

max_2_c=I 

max_2=arr[i] 

eligible_for_2nd.append(max_2_c) 

return eligible_for_2nd 

 

 

 

def main(): 

x=eval(input("Enter the number of candiates: ")) 

n=eval(input("Enter the total no. of eligible voters in the constituency: ")) 

arr=[] 

for i in range(x): 

vote=eval(input(f"Enter the number of votes, candiate {i+1} get: ")) 

arr.append(vote) 

m=sum(arr) 

winner=TRS(x,m,n,arr) 

if(len(winner)!=0): 

print("The candidates who are eligible for 2nd round are: ") 



for i in winner:  

print(i+1,end=',') 

 

if __name__ == "__main__": 

main() 

 

 

MMPS 

 

import csv 

#Let es be the total no. of electorate seats 

#Let ls be the total no. of list seats 

#Let x be the total no. of parties contesting the election 

#Let p be an array of size x which contains the total no. of seats won by each party, where all 

elements have initial value 0 

 

def MMPS(data,es,ls,x): 

total_seat=es+ls 

total_party_vote=0 

for i in range(x): 

total_party_vote=total_party_vote+eval(data[i][2]) 

threshold=(5/100)*total_party_vote 

result=[] 

result.append(["Party","Party Vote%","List Seats","Total Seats", "Seat %"]) 

for i in range(x): 

row=[] 

row.append(data[i][0]) 

row.append(round(eval(data[i][2])/total_party_vote*100,2)) 

row.append(0) 

row.append(eval(data[i][1])) 

row.append(0) 

result.append(row) 

 

#Let q be an array of size x which contains the respective quotient value for each party, where all 

elements have initial value 0 

q=[0]*x 

while ls>0: 

max_q =0 

now=0 

for i in range(x): 

if (eval(data[i][1])!=0 or eval(data[i][2])>threshold): 

q[i]=eval(data[i][2])/(2*(result[i+1][3])+1) 

if q[i]>max_q: 

max_q=q[I] 

now=I  



result[now+1][3]=result[now+1][3]+1 

ls=ls-1 

for i in range(x): 

result[i+1][2]=result[i+1][3]-eval(data[i][1]) 

result[i+1][4]=round(result[i+1][3]/total_seat*100,2) 

 

return result 

 

def main():  

vote=[] 

es=eval(input("Enter the total no. of electorate seats: ")) 

ls=eval(input("Enter the total no. of list seats: ")) 

x=eval(input("Enter the total no. of parties contesting the election: ")) 

with open('Doc_MMPS.csv', 'r') as file: 

data = csv.reader(file) 

for row in data: 

vote.append(row) 

vote.pop(len(vote)-1) 

vote.pop(0) 

#print(vote) 

result=MMPS(vote,es,ls,x) 

for i in range(x+1): 

print(result[I]) 

 

if __name__ == "__main__": 

main() 

 

IRVS 

 

import math  

import csv 

#Let n be the total no. of candidates participating in the constituency 

#Let x be the total no. of votes cast 

#Let IRVS.csv is a csv file which contains the ballot details of each vote 

#Let candidte be an dictionary of size n which contains the total no. of votes received by each 

candidate 

 

def modify(table,key,n): 

#This function modify the data extracted from the csv file as one candidate rulled out 

for i in range(len(table)): 

for j in range(n): 

if table[i][j]==key: 

table[i][j]="Null" 

return table 

 



def search(table,i): 

#This Functon finds the nxt valid preferance 

j=2 

while(table[i][j]=="Null"): 

j+=1 

return table[i][j] 

 

def IRVS(vote,x,n,candidate): 

for i in range(x): 

z=vote[i][0] 

candidate[z]=candidate[z]+1  

 

flag=0 

 

while(flag!=1): 

max_c=0 

min_c=0 

max=0; 

min=math.inf 

for i in candidate: 

if max<candidate[I]: 

max=candidate[I] 

max_c=I 

if min>candidate[I]: 

min=candidate[I] 

min_c=I 

if(max>=(.5*x)): 

flag=1 

else: 

#mincth candidate is eliminated and their voters next preferences are checked and subsequently 

distributed 

 

for i in range(x):  

if vote[i][0]==min_c: 

z=vote[i][1] 

if(z=="Null"): 

z=search(vote,i) 

candidate[z]=candidate[z]+1 

else: 

candidate[z]=candidate[z]+1 

vote=modify(vote,min_c,n) 

candidate.pop(min_c) 

 

return max_c 

 



def main():  

vote=[] 

with open('IRVS.csv', 'r') as file: 

data = csv.reader(file) 

for row in data: 

vote.append(row) 

 

candidate = {'Bob':0,'Sue':0,'Bill':0,'Matt':0} 

x=8 

n=4 

winner=IRVS(vote,x,n,candidate) 

print(f"The winner is {winner}.") 

 

if __name__ == "__main__": 

main() 

 

 

 

Parallel Voting System  

 

#Let x be the total no. of seats in the constituency 

 

#Let n be the total no. of parties participating in the constituency 

 

#Let v2 be an array of size n which contains the total no. of votes received by each party 

 

def PVS(x,n,v2): 

p=[0]*n 

#Let p be an array of size n which contains the total no. of seats won by each party, where all 

elements have initial value 0 

q=[0]*n 

#Let q be an array of size n which contains the respective quotient value for each party, where all 

elements have initialvalue 0 

while x>0: 

maxq = 0 

now = 0 

#Let now be a variable 

for i in range(n):  

q[i]=v2[i]/(p[i]+1)  

if q[i]>maxq:  

maxq=q[I] 

now=I 

p[now]=p[now]+1 

x=x-1 

return p 



def main(): 

 

x=24 

n=5 

v2=[8000, 6000, 4800, 800, 400] 

""" 

x=176 

n=8 

v2=[19914883, 11492095, 8050830, 7114282, 4166076, 2593396, 2215648, 1918769] 

""" 

result=PVS(x,n,v2) 

print(result) 

mmc=eval(input("Enter the value of mmc: ")) 

for i in range(mmc): 

x=eval(input(f"Enter the number of seats in mmc{i+1}: ")) 

n=eval(input(f"Enter the number of parties participated in the mmc{i+1}: ")) 

v2=[] 

for i in range(n): 

vote=eval(input(f"Enter the number og votes party {i+1} gets: ")) 

v2.append(vote) 

result=PVS(x,n,v2) 

print(result) 

if __name__ == "__main__": 

main() 

 

Party List Proportional System 

 

#We assume that all votes cast are valid 

#Let n be the total no. of seats 

#Let tv be the total no. of votes cast 

#Let x be the total no. of parties participating in the election 

#Let s be an array of size x which contains the total no. of seats won by each party, where all 

elements have initial value 0 

#Let v be an array of size x which contains the total no. of votes received by each party 

#Let c be the total no. of candidates in each party that are participating in the election 

#Let p be a two dimensional array of size x,c which contains the total no. of votes received by each 

individual candidate of the respective party 

 

def PLPS(n,x,v,c,p): 

tv=sum(v) 

s=[0]*x 

threshold=tv/n 

rem=n 

for i in range(x): 

if v[i] >= threshold: 



s[i]=floor(v[i]/threshold)  

rem=rem-s[I] 

 

#Let q be an array of size x which contains the respective quotient value for each party, where all 

elements have initial value 0 

q=[0]*x 

while rem>0: 

#Let maxq be a variable with initial value 0 

maxq=0 

#Let now be a variable 

now=0 

for i in range(x): 

if v[i]>=threshold: 

q[i]=v[i]/(s[i]+1) 

if q[i]>maxq:  

maxq=q[I] 

now=I 

s[now]=s[now]+1  

rem=rem-1 

elected=[[0]*x]*c 

for i in range(x): 

if s[i]>0: 

fillseat=0 

for j in range(c): 

while fillseat<s[I]: 

if p[i][j]>=(threshold/4): 

elected[i][j]=1 

fillseat=fillseat+1 

if fillseat<s[I]: 

for j in range(c): 

while fillseat<s[I]: 

if elected[i][j]==1: 

continue  

else: 

elected[i][j]=1 

fillseat=fillseat+1 

 

Proposed System 

 

import math 

 

 

def prop(c,p,TS,TVC,VC,VO): 

#Let c be the total no. of constituencies 

#Let p be the total no. of parties participating in the election  



#Let so be an array of size p which contains the total no. of seats won by each party overall, where 

all elements have initial value 0  

so=[0]*p 

#Let n be a variable with initial value 0 

n=0 

for k in range(c): 

#Let ts be the total no. of seats in the constituency 

ts=TS[k] 

#Let tvc be the total no. of votes cast in the constituency 

tvc=TVC[k] 

#Let vc be an array of size p which contains the total no. of votes received by each party in that 

constituency 

vc=VC[k] 

threshold=(10/100)*tvc 

#Let sc be an array of size p which contains the total no. of seats won by each party in that 

constituency, where all elements have initial value 0 

sc=[0]*p 

#Let q be an array of size p which contains the respective quotient value for each party, where all 

elements have initial value 0 

q=[0]*p 

n=n+ts 

while ts>0: 

#Let maxq be a variable with initial value 0 

maxq=0 

#Let now be a variable 

now=0 

for i in range(p): 

if vc[i]>=threshold: 

q[i]=vc[i]/(2*sc[i]+1)  

if q[i]>maxq: 

maxq=q[I] 

now=I 

sc[now]=sc[now]+1  

so[now]=so[now]+1  

ts=ts-1 

 

 

#Let tvo be the total no. votes cast overall 

tvo=sum(TVC) 

#Let VO be an array of size p which contains the total no. of votes received by each party overall 

threshold=(5/100)*tvo 

#Let q be an array of size p which contains the respective quotient value for each party, where all 

elements have initial value 0 

q=[0]*p 

topup= math.ceil(n/9) 



while topup>0: 

#Let maxq be a variable with initial value 0 

maxq=0 

#Let now be a variable 

now=0 

for i in range(p): 

if (VO[i]>=threshold):  

q[i]=VO[i]/(2*so[i]+1)  

if q[i]>maxq: 

maxq=q[I] 

now=I  

 

so[now]=so[now]+1 

topup=topup-1 

return so 

 

def main(): 

c=10 

p=5 

TS=[5]*10 

TVC=[28000]*10 

VC=[[8000,10000,3000,2000,5000]]*10 

VO=[80000,100000,30000,20000,50000] 

print(prop(c,p,TS,TVC,VC,VO)) 

 

if __name__=="__main__": 

main() 
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ABSTRACT

There is already enough content available on the movie recommendation system. Showing the
movie recommendations is essential so that the user need not waste a lot of time searching for the
content which he/she might like. Thus, movie recommendation system plays a vital role to get
user personalized movie recommendations. After searching a lot on the internet and referring to a
lot of research papers, we got to know that the recommendations made using Content-based
Filtering are using a single text to vector conversion technique and a
single technique to find the similarity between the vectors. In this research work, we have used
multiple text to vector conversion techniques and manipulated the results of the multiple
algorithms to get the final recommendation list. You can think of it as a hybrid approach using the
Content-based Filtering technique only.

Keyword: - Movie Recommendations, Content-based Filtering, Text to vector, Cosine similarity.
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1.  INTRODUCTION

Background:

Due to abundance of information collected till 21st century and the increasing rate of information
flowing over the internet, there is a lot of confusion related to what to consume and what not to
consume. Even on YouTube, when you want to watch a video of a particular concept, generally,
there are a lot of videos available out there for you. Now, since the results are ranked
appropriately, there may not be much issue but what if the results were not ranked appropriately?
Well, in that case, we would probably spend a lot of time to find the best possible video which
suits us and satisfies our need. This recommendation results are when you search something on a
website. Next time, when you visit a particular website, without even searching, sometimes the
system is able to show you recommendations which you might like. Isn’t this an interesting
feature? So, basically, the job of a recommender system is to suggest the most relevant items to the
user. Recommendation systems are used in YouTube for video recommendation, Amazon and
Flipkart for product recommendation, Netflix and Amazon Prime for movie recommendation, and
so on. Whatever you do on such websites, there is a system which see your behaviour and then
ultimately suggest things / items with which you are highly likely to engage. This research paper
deals with movie recommendations and logic behind movie recommendation system, traditional
movie recommendation systems, issues related to traditional movie recommendation systems, and
a proposed solution for Artificial Intelligence based personalized movie recommendation system.
A lot of famous movie recommendation related datasets are already available on Kaggle and other
websites. Some of the famous datasets include Movie lens dataset, TMDB Movie Dataset, and the
dataset by Netflix itself. Websites like Netflix, Amazon Prime, etc. use movie recommendation to
increase their revenue or profits by ultimately improving the user experience. In fact, there was a
competition conducted by Netflix in the year 2009 with a prize money of nearly 1 million dollars
($1M) for making at least 10% improvement in the existing system.

As dealt earlier, we have a lot of data available at our exposure and we need to filter the data in
order to consume it because generally we are not interested in each and everything available to us.
In order to filter the data, we need some filtering techniques. There are different types of filtering
techniques or movie recommendation algorithms over which a recommendation system can be
based upon.

Major filtering techniques or movie recommendation algorithms are as follows:

1. Content Based Filtering

2. Collaborative Filtering

3. Hybrid Filtering

8



Objective:

To build a recommendation system that will provide a mechanism to assist users in classifying
movies with similar content on the basis of genre, cast, crew etc.

Purpose:

People are often confronted with very large amounts of data, for instance through the internet in an
information society. We are asked to make choices that are almost impossible to make without
additional information or guidance. Recommender systems can provide such guidance by assisting
the user in the decision-making process or by making the decision for the user. These systems use
the enormous amount of available data in a way that users never can. Movie recommendation in
portable environment is significantly important for users. A movie recommender has proven to be
a powerful tool on providing useful movie suggestions for users. The content-based engine
recommends personalized content based on certain predefined parameters. These non-exhaustively
include a user’s watch history, search history, and the items (movies, TV shows) that are currently
being viewed. With rapidly increasing content, recommendation systems turn out as one of the
prominent methods to deliver ‘actual value’ to a customer - by being a scalable method to
personalize content for them. Instead of reading long reviews which turn out to be a decisive
factor for many users, movies of similar content are suggested to the users.

Scope:

The number of choices for anything on internet is very high and it’s tedious to refine most wanted
data by self while searching. The scope of this proposal system includes working within numerous
data, with ease. Many people have problem selecting the alternative item of movie due to lack of
time and due to search issues. Also, movie recommendations from friends can be time consuming.
The system helps in saving lots of time. Many mobile phone and limited processing power
computers can’t handle recommender system due to its extremely large dataset. The solution opted
for this can be use of web services. The proposed system uses web services, thus makes process
simpler.

Applicability:

This recommender system can be applied to any platforms that streams movies.
It can also be used by users to search for similar movies with respect to a particular movie. This
not only saves time and effort but also gives the users more convenient experience.

Achievements:

9



2. LITERATURE REVIEW

Sang-Min Choi, et. al. [1] mentioned about the shortcomings of collaborative filtering approach
like sparsity problem or the cold-start problem. In order to avoid this issue, the authors have
proposed a solution to use category information. The authors have proposed a movie
recommendation system which is based on genre correlations. The authors stated that the category
information is present for the newly created content. Thus, even if the new content does not have
enough ratings or enough views, still it can pop up in the recommendations list with the help of
category or genre information. The proposed solution is unbiased over the highly rated most
watched content and new content which is not watched a lot. Hence, even a new movie can be
recommended by the recommendation system.

George Lekakos, et. al. [2] proposed a solution of movie recommendation using hybrid approach.
The authors stated that Content based filtering and Collaborative filtering have their own
shortcomings are can be used in a specific situation. Hence, the authors have come up with a
hybrid approach which takes into consideration both content-based filtering as well as
collaborative filtering. The solution is implemented in 'MoRe' which is a movie recommendation
system. For the sake of pure collaborative filtering, Pearson correlation coefficient has not been
used. Instead, a new formula has been used. But this formula has an issue of 'divide by zero' error.
This error occurs when the users have given same rating to the movies. Hence, the authors have
ignored such users. In case of pure content-based recommendation system, the authors have used
cosine similarity by taking into consideration movie writers, cast, directors, producers and the
movie genre. The authors have implemented a hybrid recommendation method by using 2
variations - 'substitute' and 'switching'. Both of these approaches show results based on
collaborative filtering and show recommendations based on content-based filtering when a certain
criterion is met. Hence, the authors use collaborative filtering technique as their main approach.

Debashis Das, et. al. [3] wrote about the different types of recommendation systems and their
general information. This was a survey paper on recommendation systems. The authors mentioned
about Personalized recommendation systems as well as non-personalized systems. User based
collaborative filtering and item-based collaborative filtering was explained with a very good
example. The authors have also mentioned about the merits and demerits of different
recommendation systems.

Jiang Zhang, et. al. [4] proposed a collaborative filtering approach for movie recommendation and
they named their approach as 'Weighted KM-Slope-VU'. The authors divided the users into
clusters of similar users with the help of K-means clustering. Later, they selected a virtual opinion
leader from each cluster which represents the all the users in that particular cluster. Now, instead
of processing complete user-item rating matrix, the authors processed virtual opinion leader-item
matrix which is of small size. Later, this smaller matrix is processed by the unique algorithm
proposed by the authors. This way, the time taken to get recommendations is reduced.

S. Rajarajeswari, et. al. [5] discussed about Simple Recommender System, Content-based
Recommender System, Collaborative Filtering based Recommender System and finally proposed
a solution consisting of Hybrid Recommendation System. The authors have taken into
consideration cosine similarity and SVD. Their system gets 30 movie recommendations using
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cosine similarity. Later, they filter these movies based on SVD and user ratings. The system takes
into consideration only the recent movie which the user has watched because the authors have
proposed a solution which takes as input only one movie.

Muyeed Ahmed, et. al. [6] proposed a solution using K-means clustering algorithm. Authors have
separated similar users by using clusters. Later, the authors have created a neural network for each
cluster for recommendation purpose. The proposed system consists of steps like Data
Pre-processing, Principal Component Analysis, Clustering, Data Pre-processing for Neural
Network, and Building Neural Network. User rating, user preference, and user consumption ratio
have been taken into consideration. After clustering phase, for the purpose of predicting the
ratings which the user might give to the unwatched movies, the authors have used neural network.
Finally, recommendations are made with the help of predicted high ratings.

Gaurav Arora, et. al. [7] have proposed a solution of movie recommendation which is based on
users' similarity. The research paper is very general in the sense that the authors have not
mentioned the internal working details. In the Methodology section, the authors have mentioned
about City Block Distance and Euclidean Distance but have not mentioned anything about cosine
similarity or other techniques. The authors stated that the recommendation system is based on
hybrid approach using context based filtering and collaborative filtering but neither they have
stated about the parameters used, not they have stated about the internal working details.

V. Subramaniyaswamy, et. al. [8] have proposed a solution of personalized movie
recommendation which uses collaborative filtering technique. Euclidean distance metric has been
used in order to find out the most similar user. The user with least value of Euclidean distance is
found. Finally, movie recommendation is based on what that particular user has best rated. The
authors have even claimed that the recommendations are varied as per the time so that the system
performs better with the changing taste of the user with time.

Harper, et. al. [9] mentioned the details about the Movie Lens Dataset in their research paper. This
dataset is widely used especially for movie recommendation purpose. There are different versions
of dataset available like Movie Lens 100K / 1M / 10M / 20M / 25M /1B Dataset. The dataset
consists of features like user id, item id / movie id, rating, timestamp, movie title, IMDb URL,
release date, etc. along with the movie genre information.

According to R. Lavanya, et. al. [10], in order to tackle the information explosion problem,
recommendation systems are helpful. Authors mentioned about the problems of data sparsity, cold
start problem, scalability, etc. Authors have done a literature review of nearly 15 research papers
related to movie recommendation system. After reviewing all these papers, they observed that
most of the authors have used collaborative filtering rather than content-based filtering. Also, the
authors noticed that a lot of authors have used hybrid-based approach. Even though a lot of
research has been done on recommendation systems, there is always a scope for doing more in
order to solve the existing drawbacks.

Ms. Neeharika Immaneni, et. al. [11] proposed a hybrid recommendation technique which takes
into consideration both content-based filtering approach as well as collaborative filtering approach
in a hierarchical manner in order to show a personalized movie recommendation to the users. The
most unique thing about this research work is that the authors have made movie recommendations
using a proper sequence of images which actually describe the movie story plot. This actually
helps for better visuals. The author has also described the graph-based recommendation system,
content-based approaches, hybrid recommender systems, collaborative filtering systems, genre
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correlations-based recommender system, etc. The proposed algorithm has 4 major phases. Initially,
social networking website
like Facebook is used to know the user interest. Later, the movie reviews need to be analysed and
the recommendations needs to be made. Finally, story plot needs to be generated for better visuals.

Md. Akter Hossain, et. al. [12] proposed NERS which is an acronym for neural engine-based
recommender system. The authors have done a successful interaction between 2 datasets carefully.
Moreover, the authors stated that the results of their system are better than the existing systems
because they have incorporated the usage of general dataset as well as the behaviour-based dataset
in their system. The authors have used 3 different estimators in order to evaluate their system
against the existing systems.

12



3. REQUIREMENTS AND ANALYSIS

Problem Statement:

For building a recommender system from scratch, we face several different problems. Currently
there are a lot of recommender systems based on the user information, so what should we do if the
website has not gotten enough users. After that, we will solve the representation of a movie, which
is how a system can understand a movie. That is the precondition for comparing similarity
between two movies. Movie features such as genre, actor and director are a way that can
categorize movies. But for each feature of the movie, there should be different weight for them
and each of them plays a different role for recommendation. So, we get these questions:

• How to recommend movies when there is no user information?
• What kind of movie features can be used for the recommender system?
• How to calculate the similarity between two movies?
• Is it possible to set weight for each feature?

Hardware platform:

Processor: Intel® Core™ i5-8250U CPU @ 1.60GHz – 1.80GHz
RAM: 8 GB

Software platform:

Operating System: Microsoft Windows 11 (64-bit)
Programming language used for model building: Python
Python notebook used: Jupyter Notebook
Others: Anaconda Navigator

Requirements:

• numpy: 1.22.3
• pandas: 1.4.1
• ast: 2.20.5
• streamlit: 1.7.0
• nltk: 3.7

Programming languages used for developing Web application: Python, CSS.
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4. SYSTEM DESIGN
4.1 Proposed Methodology:

We need to perform pre-processing on the dataset and combine the relevant features into a single
feature. Later, we need to convert the text from that particular feature into vectors. Later, we need
to find the similarity between the vectors. Finally, get the recommendations as per the system
architecture mentioned below.

14



4.2 Dataset, exploratory data analysis & pre-processing:

The ‘TMDB 5000 Movie Dataset’ is taken into consideration for movie recommendation purpose
in this research work. This dataset is available on kaggle.com. The dataset is composed of 2 CSV
files - ‘tmdb_5000_movies.csv’ and ‘tmdb_5000_credits.csv’
The ‘tmdb_5000_movies.csv’ dataset consists of the following attributes:

● ‘budget’: It indicates the budget of the movie.
● ‘genres’: It indicates the genres of the movie like Action, Documentary, etc.
● A movie can have multiple genres.
● ‘homepage’: It indicates the homepage of the movie. It is basically a website link.
● ‘id’: It indicates movie ID.
● ‘keywords’: It indicates the keywords of the movie. Apart from the title of the movie,

keywords give a quick information about the movie.
● ‘original_language’: It indicates whether the movie is originally created in English or

other language.
● ‘original_title’: It is nothing but the movie title.
● ‘overview’: It is a short description of the movie.
● ‘popularity’: It is a metric which indicates popularity.
● ‘production_companies’: It consists of the names of companies which has produced the

movie
● ‘production_countries’: It consists of the names of the countries in which the movie

production took place.
● ‘release_date’: It consists of the release date of the movie. The format used is

yyyy-mm-dd where ‘yyyy’
● indicates year of release, ‘mm’ indicates the month of release, and ‘dd’ indicates the

day of release.
● ‘revenue’: It indicates the revenue earned by the movie.
● ‘runtime’: It indicates the runtime of a movie. Runtime basically means the length of

the movie.
● ‘spoken_languages’: It consists of the languages spoken in the movie.
● ‘status’: It indicates the status of the movie. For example, a movie can be released or

not released which basically indicates the status of that movie.
● ‘tagline’: It consists of the tagline of the movie.
● ‘title’: It consists of the title of the movie.
● ‘vote_average’: It indicates the average of the votes.
● ‘vote_count’: It indicates the vote count.

Fig. 1. Statistical data about ‘tmdb_5000_movies.csv’ dataset using pandas Dataframe.describe() method
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Fig. 2. Glimpse of the ‘tmdb_5000_movies.csv’ dataset using ‘The Amazing Spiderman’ movie

The ‘tmdb_5000_credits.csv’ dataset consists of the following attributes:

● ‘movie_id’: It indicates the movie ID.
● ‘title’: It indicates the title of the movie.
● ‘cast’: It consists of the cast of the movie. Cast implies the actors and actresses who

appear in the movie.
● ‘crew’: It consists of those people who are concerned with the production of the movie.

Fig. 3. Statistical data about ‘tmdb_5000_credits.csv’ dataset using pandas Dataframe.describe() method
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Fig. 4. Glimpse of the ‘tmdb_5000_credits.csv’ dataset using ‘The Amazing Spiderman’ movie

Fig. 5. Top Genres

Movies having the genre as Drama are maximum in number as compared to Family movies and
Horror movies. A movie might have multiple genres.

Fig. 6. Actor with highest appearance

The above figure indicates the actors with the highest appearance in the decreasing order.
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Fig. 7. Correlation Matrix for ‘tmdb_5000_movies.csv’ dataset

From the above correlation matrix, it can be seen that the diagonal is yellow coloured because
similarity of something with itself is always 1.0, i.e., maximum. Moreover, it can be seen that
revenue and vote count have more similarity as compared to budget and vote count.

Data Cleaning:
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Since the dataset contained some null values, we searched for them and dropped them. Also, we
checked for the duplicated values.

Data processing:

import ast
def convert(obj):

L = []
for i in ast.literal_eval(obj):

L.append(i['name'])
return L

Using the convert function, we are retrieving the ‘name’ value from each row of the ‘genre’
column and appending into a list and storing it back into the ‘genre’ column.

Similarly, we follow the same procedure for the ‘keyword’ column.

def convertcast(obj):
L = []
c = 0
for i in ast.literal_eval(obj):

if c!=3:
L.append(i['name'])
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c+=1
else:

break
return L

The convertcast function retrieves the first three ‘name’ values from each row of the cast column
and appending into a list and storing it back into the ‘cast’ column.

def fetch_director(obj):
L = []
for i in ast.literal_eval(obj):

if i['job'] == 'Director':
L.append(i['name'])
break

return L

The fetch_director function fetches only the name of the director from the crew column and stores
it as a list of single value back into the crew column.
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Then we removed the extra white spaces between two words of an individual element from the
lists to consider it as a single word for further analysis.

We then created a new column ‘tags’ by concatenating the ‘genres’, ‘keywords’, ‘cast’ and ‘crew’
columns into one.
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Then we named the ‘movies’ table into ‘new_df’ with id, title and tags as the attributes for further
analysis.

The ‘tags’ column of the new_df table is then arranged in a way such that each element of the lists
are joined with a single space in between to simplify the process of analysis.

Text-vectorization:
Now that we have generated tags for each movie, it is time to calculate the similarity among them.
But the tags are textual values but not any numerical ones. So, we cannot apply any sort of
mathematical formula or operations to generate similarity. This is where comes the idea of text
vectorization. Text vectorization is the process of converting texts to vectors using different
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approaches. When we apply the process of vectorization, each movie becomes a vector just like a
coordinate in a 2-D space. Then our task is to recommend the closest vectors (or movies) with
respect to a selected movie.

In the above diagram, if the selected movie is depicted by the red arrow vector, then the closest
arrows adjacent to it are the similar movies that will be recommended. Here we have followed the
Bag of Words technique for text vectorization.

We concatenated the tags of all the movies and chose the 5000 most frequently used words. Then
we compared each movie tags with these 5000 words and taking into consideration, the frequency
of each word for each movie, we created a vector for each of them. This gave us a 4809 X 5000
sparse matrix for further analysis. This entire process was done using CountVectorizer class from
sklearn library.
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Stemming:

Then we used the PorterStemmer class from nltk library to remove the redundant words and words
of the same nature from the tags of the movies. This process is also known as stemming and it
helps us perform a better and simplified analysis.

Similarity:

We then used the cosine_similarity function from sklearn library which helped us to generate the
similarity matrix that contains the similarity of each movie with respect to each other movie in the
dataset. This is the final matrix which helps us recommend movies based on a specific movie of
the user’s choice.
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Finally, we created the ‘recommend’ function which helps us recommend top 6 movies similar to
the movie selected by the user with the help of the similarity matrix which we generated above.

We have given two example outputs of the movies recommended by our model. We have selected
the movies ‘Shutter Island’ and ‘Batman’ as input and our recommender system has recommended
top 6 movies similar to these. The results are very accurate from personal experience and thus we
conclude that our recommender system seems to be a decent one.

4.3 Algorithms:

(1) PorterStemmer:

Stemming is the process of producing morphological variants of a root/base word. Stemming
programs are commonly referred to as stemming algorithms or stemmers. A stemming algorithm
reduces the words “chocolates”, “chocolatey”, “choco” to the root word, “chocolate” and
“retrieval”, “retrieved”, “retrieves” reduce to the stem “retrieve”.
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The Porter stemming algorithm (or ‘Porter stemmer’) is a process for removing the commoner
morphological and inflexional endings from words in English. Its main use is as part of a term
normalisation process that is usually done when setting up Information Retrieval systems.

Example:

#importing modules

from nltk.stem import PorterStemmer

from nltk.tokenize import word_tokenize

ps = PorterStemmer()

sentence = "Programmers program with programming languages"

words = word_tokenize(sentence)

for w in words:

print(w, " : ", ps.stem(w))

Output:

Programmers  :  program

program  :  program

with  :  with

programming  :  program

languages  :  languag

Implementation in our model:

import nltk

from nltk.stem.porter import PorterStemmer

ps = PorterStemmer()

def stem(text):

y = []

for i in text.split():

y.append(ps.stem(i))

return " ".join(y)
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(2) CountVectorizer:

CountVectorizer is a great tool provided by the scikit-learn library in Python. It is used to
transform a given text into a vector on the basis of the frequency (count) of each word that occurs
in the entire text. This is helpful when we have multiple such texts, and we wish to convert each
word in each text into vectors (for using in further text analysis).

class sklearn.feature_extraction.text.CountVectorizer(*, input='content', encoding='utf-8', decode_error='s
trict', strip_accents=None, lowercase=True, preprocessor=None, tokenizer=None, stop_words=None, toke
n_pattern='(?u)\b\w\w+\b', ngram_range=(1, 1), analyzer='word', max_df=1.0, min_df=1, max_features=
None, vocabulary=None, binary=False, dtype=<class 'numpy.int64'>)

Example:

from sklearn.feature_extraction.text import CountVectorizer

document = ["One Geek helps Two Geeks",

"Two Geeks help Four Geeks",

"Each Geek helps many other Geeks at GeeksforGeeks"]

# Create a Vectorizer Object

vectorizer = CountVectorizer()

vectorizer.fit(document)

# Printing the identified Unique words along with their indices

print("Vocabulary: ", vectorizer.vocabulary_)

# Encode the Document

vector = vectorizer.transform(document)

# Summarizing the Encoded Texts

print("Encoded Document is:")

print(vector.toarray())
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Output:

Vocabulary:  {'one': 9, 'geek': 3, 'helps': 7, 'two': 11, 'geeks': 4, 'help': 6, 'four': 2, 'each': 1, 'many':
8, 'other': 10, 'at': 0, 'geeksforgeeks': 5}

Encoded Document is:

[ [0 0 0 1 1 0 0 1 0 1 0 1]

[0 0 1 0 2 0 1 0 0 0 0 1]

[1 1 0 1 1 1 0 1 1 0 1 0] ]

Implementation in our model:

from sklearn.feature_extraction.text import CountVectorizer

cv = CountVectorizer(max_features=5000,stop_words='english')

vector = cv.fit_transform(new_df['tags']).toarray()

(3) Cosine Similarity:

Cosine similarity is a metric, helpful in determining, how similar the data objects are irrespective
of their size. We can measure the similarity between two sentences in Python using Cosine

28



Similarity. In cosine similarity, data objects in a dataset are treated as a vector. The formula to find
the cosine similarity between two vectors is –

Cos(x, y) = x . y / ||x|| * ||y||

where,

● x . y = product (dot) of the vectors ‘x’ and ‘y’.
● ||x|| and ||y|| = length of the two vectors ‘x’ and ‘y’.
● ||x|| * ||y|| = cross product of the two vectors ‘x’ and ‘y’.
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5. IMPLEMENTATION AND TESTING
5.1 Dataset used

The ‘TMDB 5000 Movie Dataset’ is taken into consideration for movie recommendation purpose
in this research work. This dataset is available on www.kaggle.com. The dataset is composed of 2
CSV files - ‘tmdb_5000_movies.csv’ and ‘tmdb_5000_credits.csv’

5.2 Code for building the model

The code was written in Python scripting language and it was run on Jupyter Notebook:

import numpy as np
import pandas as pd

movies = pd.read_csv('tmdb_5000_movies.csv')
credits = pd.read_csv('tmdb_5000_credits.csv')

movies.head()
credits.head()
movies.shape
credits.shape

movies = movies.merge(credits,on='title')

movies.shape
movies.head()

# we would recommend movies on the basis of
#genres
#keywords
#title
#cast
#crew
#and we'll keep the id column as it's a primary key
#rest of the attributes we'll remove

movies = movies[['id','title','genres','keywords','cast','crew']]
movies.head()

movies.isnull().sum()

movies.dropna(inplace=True)

movies.isnull().sum()
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movies.duplicated().sum()

import ast
def convert(obj):
    L = []
   for i in ast.literal_eval(obj):
        L.append(i['name'])
   return L

movies['genres'].apply(convert)
movies['genres'] = movies['genres'].apply(convert)
movies.head()

movies['keywords'].apply(convert)
movies['keywords'] = movies['keywords'].apply(convert)
movies.head()

def convertcast(obj):
    L = []
    c = 0
   for i in ast.literal_eval(obj):
       if c!=3:
            L.append(i['name'])
            c+=1
       else:
           break
   return L

movies['cast'].apply(convertcast)
movies['cast'] = movies['cast'].apply(convertcast)
movies.head()

def fetch_director(obj):
    L = []
   for i in ast.literal_eval(obj):
       if i['job'] == 'Director':
            L.append(i['name'])
           break
   return L

movies['crew'].apply(fetch_director)
movies['crew'] = movies['crew'].apply(fetch_director)
movies.head()

movies['genres'] = movies['genres'].apply(lambda x:[i.replace(" ","")
for i in x])
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movies['keywords'] = movies['keywords'].apply(lambda x:[i.replace("
","") for i in x])
movies['cast'] = movies['cast'].apply(lambda x:[i.replace(" ","") for i
in x])
movies['crew'] = movies['crew'].apply(lambda x:[i.replace(" ","") for i
in x])
movies.head()

movies['tags'] = movies['genres'] + movies['keywords'] + movies['cast']
+ movies['crew']
movies.head()

new_df = movies[['id', 'title', 'tags']]
new_df.head()

new_df['tags'] = new_df['tags'].apply(lambda x:" ".join(x))
new_df.head()

new_df['tags'][3]

new_df['tags'] = new_df['tags'].apply(lambda x:x.lower())
new_df.head()

import nltk
from nltk.stem.porter import PorterStemmer
ps = PorterStemmer()
def stem(text):
    y = []
   
   for i in text.split():
        y.append(ps.stem(i))
   return " ".join(y)

new_df['tags'] = new_df['tags'].apply(stem)
new_df['tags'][0]

from sklearn.feature_extraction.text import CountVectorizer
cv = CountVectorizer(max_features=5000,stop_words='english')
vector = cv.fit_transform(new_df['tags']).toarray()

vector.shape

vector[0]
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len(cv.get_feature_names())
cv.get_feature_names()

from sklearn.metrics.pairwise import cosine_similarity
similarity = cosine_similarity(vector)
similarity

def recommend(movie):
    movie_index = new_df[new_df['title'] == movie].index[0]
    distances = similarity[movie_index]
    movies_list =
sorted(list(enumerate(distances)),reverse=True,key=lambda x:x[1])[1:7]

   for i in movies_list:
        print(new_df.iloc[i[0]].title)

recommend('Shutter Island')

recommend('Batman')
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import pickle
pickle.dump(new_df,open('movies.pkl','wb'))

5.3 Code for the Webapp:

#movies.py: Code for the frontend of webapp

import json
from numpy import imag
import streamlit as st
import streamlit.components.v1 as components
import pickle
import pandas as pd
import requests

with open('style.css') as f:
    st.markdown(f'<style>{f.read()}</style>',unsafe_allow_html=True)

def fetch_posters(movie_id):
   
response=requests.get("https://api.themoviedb.org/3/movie/{}?api_key=74
e3b918d5bd830f89748d5576f8641a&language=en-US".format(movie_id))
    data=response.json()
   return "https://image.tmdb.org/t/p/w500/"+data['poster_path']

def fetch_overview(movie_id):
   
response=requests.get("https://api.themoviedb.org/3/movie/{}?api_key=74
e3b918d5bd830f89748d5576f8641a&language=en-US".format(movie_id))
    data=response.json()
   return data['overview']
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def recommend(movie):
   try:
        index = movies[movies['title'] == movie].index[0]
        distances = sorted(list(enumerate(similarity[index])),
reverse=True, key=lambda x: x[1])
        recommended_movie_names = []
        recommended_movies_posters=[]
        director_names=[]
        movies_overview = []
       for i in distances[1:7]:
           # fetch the movie poster
            movie_id = movies.iloc[i[0]].movie_id
            recommended_movie_names.append(movies.iloc[i[0]].title)
            director_names.append(director.iloc[i[0]].director)
            recommended_movies_posters.append(fetch_posters(movie_id))
            movies_overview.append(fetch_overview(movie_id))

       return recommended_movie_names,
recommended_movies_posters,movies_overview,director_names

   except TypeError as e:
        print(e)

st.title("We Can Recommend You Movies")
movies=pickle.load(open("movies_new2.pkl","rb"))
similarity=pickle.load(open("similarity2.pkl","rb"))
director=pickle.load(open("directors2.pkl","rb"))
movies_list=movies["title"].values
selected_movies=st.selectbox("Select Your movies",movies_list)
try:
   if st.button("Recommend"):
        name,poster,overview,director_name=recommend(selected_movies)

        col1,col2,col3,col4,col5,col6=st.columns([6,6,6,6,6,6])

       with col1:
            st.text(name[0])
            dir_name=director_name[0]
            st.image(poster[0])
            st.text("Directed By: "+dir_name)
            st.write(overview[0])

       with col2:
            st.text(name[1])
            dir_name=director_name[1]
           #st.write("Directed By: "+dir_name)
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            st.image(poster[1])
            st.text("Directed By: "+dir_name)
            st.write(overview[1])

       with col3:
            st.text(name[2])
            dir_name=director_name[2]
            st.image(poster[2])
            st.text("Directed By: "+dir_name)
            st.write(overview[2])
       with col4:
            st.text(name[3])
            dir_name=director_name[3]
            st.image(poster[3])
            st.text("Directed By: "+dir_name)
            st.write(overview[3])

       with col5:
            st.text(name[4])
            dir_name=director_name[4]
            st.image(poster[4])
            st.text("Directed By: "+dir_name)
            st.write(overview[4])

       with col6:
            st.text(name[5])
            dir_name=director_name[5]
            st.image(poster[5])
            st.text("Directed By: "+dir_name)
            st.write(overview[5])

except TypeError as e:
    st.text("We can not find the given movie name")
           

#style.css: CSS code for movies.py

.css-1v3fvcr
{
   display: flex;
   flex-direction: column;
   width: 100%;
   overflow: auto;
   -webkit-box-align: center;
   align-items: center;
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}
div.css-ocqkz7
{
   margin-top:20px;
   display:flex;
   column-gap: 20px;
   -webkit-box-align: stretch;
   justify-content: space-around;
   justify-content: space-between;
   align-items: stretch;
   -webkit-box-flex: 2;
   flex-grow: 4;
   width:800px;
   gap: 3rem;
   margin-right:350px;
   margin-left:0px;
}

div.css-ocqkz7>*
{
   flex:0 0 33.3333%;
   text-align:center;
}

div.css-183lzff
{
   font-family: sans-serif;
   font-size: 20px;
   color: white;
   font-style:bold;
   overflow-x: visible;
   padding:2px;
   width:80px;
}

.css-5ft5ak
{
   width: 267px;
   position: relative;
   display: flex;
   flex: 1 1 0%;
   flex-direction: column;
   gap: 1rem;
   margin-top:20px;
}
div.css-183lzff
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{
   width:370px;
}
div.css-1pmdbur
{
   width: 1000px;
   height: 300px;
   padding-bottom: 25px;
   padding:5px;
   display: block;
   gap: 1rem;
}

/*posters*/
div.css-1v0mbdj
{
   display: block;
   width: 550px;
   padding:10px;
}
.stMarkdown
{
   overflow-x: scroll;
   height:112px;        
}
div.css-1v0mbdj img
{
   width:200px;
}
.css-ytjvkl
{
   width: 284px;
   position: relative;
   display: flex;
   flex: 1 1 0%;
   flex-direction: column;
   gap: 1rem;
   border-bottom:1px tomato solid;
   padding-bottom:10px;
}
.css-1uubtht
{
   width: 202px;
   position: relative;
   display: flex;
   flex: 1 1 0%;
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   flex-direction: column;
   gap: 1rem;
}
.css-14mi1u4 {
   width: 161px;
   position: relative;
   display: flex;
   flex: 1 1;
   flex-direction: column;
   gap: 2rem;
}

6. RESULTS
This section consists of the output of the recommended movies based on the movie selected by the
user.

Output - 1
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Output - 2
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Output - 3
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Output - 4
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7. CONCLUSION
The proposed algorithm uses textual metadata of the movies like plot, cast, genre, release year and
other production information to analyse them and recommend the most similar ones. Our system
only needs a movie which the user is interested in to come up with suitable recommendations. For
evaluation, we ran our algorithm on a subset of all the movies present on the TMDB server. The
paper analyses application similarity measure for recommendations forecasting in
recommendations systems. It is shown that used method for computing similarity measure in
recommendations systems are cosine similarity measure. We also work on allowing retraining of
the system, by rating results as “good” or “bad”, thus making the predictions much more precise
than just selecting one movie or giving one piece of text.

7.1 Future Scope

Future work includes keeping a track of movies searched by users in nearby location to
recommend trending movies. We can try to combine the watch history of the user with the watch
history of geographically contextual users (those living nearby) to give more ‘location relevant’
recommendations. Furthermore, using user ratings of movies on websites like Rotten tomatoes,
Metacritic, IMDB etc. opens up the possibility of combining collaborative filtering techniques
with our method into a hybrid model to get the best out of both approaches.
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Abstract 
 
 
The goal of document classification is to give a certain document the best 
possible label. Insufficient label information and an unstructured sparse 
format are the fundamental problems with document classification. The 
former issue might be effectively solved by a semi-supervised learning 
(SSL) technique, whereas the latter issue might be solved by considering 
various document representation schemes. Co-training is a well-liked 
semi-supervised learning (SSL) technique that tries to take advantage of 
different viewpoints in terms of feature subsets for the same example. 
 
In this project, we suggest semi-supervised learning for enhancing 
document categorization performance. We transform a document using 
three document representation techniques to broaden the variety of 
feature sets for classification: topic distribution based on latent Dirichlet 
allocation (LDA), term frequency-inverse document frequency (TF-IDF) 
based on the bag-of-words scheme, and neural network-based document 
embedding known as document to vector (Doc2Vec). We show 
effectiveness of our algorithm on a dataset prepared by ourselves. 
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Introduction 
 

The amount of online text documents that are accessible via digital 
libraries, news sources, and corporate intranets has grown significantly. 
These documents, along with other unstructured data, are expected to 
overtake other online data types as the most common ones. An essential 
activity that can aid individuals in finding information on these massive 
databases is automatic text categorization, which is the task of allocating 
text documents to pre-specified classes (topics or themes) of documents. 
There is no such automated, systematic method for classifying documents 
that can be used to simultaneously update the classification model and 
give class labels to a large number of documents. 

Labelling documents requires a lot of human labour, takes a long time, 
and is not cost-effective. Additionally, since a document is a list of words 
with a variable length, it should be converted into a numerical vector with 
a fixed size for further analysis. Although there are some methods 
available by which we can represent the text information into numerical 
values such as term and inverse term frequency (TF-IDF), one hot 
encoding, count victimizer etc. For all text analytics tasks, no document 
representation option outperforms the others. One of the key functions of 
text mining is document classification, which is employed in processes like 
sentiment analysis and spam filtering. Inadequate label information and a 
lack of an ideal representation approach are the two fundamental 
obstacles to document classification. In many applications that deal with 
organising, classifying, finding, and succinctly presenting a sizable 
amount of information, document classification plays a crucial role. A long-
standing and thoroughly researched issue in information retrieval is 
document classification. 

Document classification can be divided into three categories: These are 
Supervised document classification, Unsupervised document 
classification, and Semi-supervised document classification. In 
Supervised document classification, some mechanism external to the 
classification model (generally human) provides information related to the 
correct document classification. In Unsupervised document classification, 
no information is provided by any external mechanism whatsoever. In 
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case of Semi-supervised document classification parts of the documents 
are labelled by an external mechanism. There are two main factors which 
make document classification a challenging task: (i) feature extraction; (ii) 
topic ambiguity. First, Feature extraction 

Deals with taking out the right set of features that accurately describe the 
characteristics of a document and helps in building a good classification 
model. Second, many broad topic documents themselves are so 
complicated that it becomes difficult to put them into any specific category. 

In this project we propose our model on the basis of semi supervised 
learning. Here we use our own dataset containing 4450 rows and 9 
columns. First, we remove the stop words. Then we apply Stemming and 
Lemmatization to normalise the words into their root form. These are the 
pre-processing. Then we train our LDA (Latent Dirichlet allocation) model 
and as an output we get the desired classes of the document. 
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Background 
 
In information science or computer science, document categorization or 
classification is a challenge. We classify or categorise a document into 
one or more groups. Either manually or with the aid of some algorithms, 
this can be done. 
While algorithmic classification is employed in information and computer 
science, manual classification—also known as intellectual 
categorization—has been used mostly in library science. There is 
multidisciplinary study on document classification since issues that are 
resolved utilising both categories are distinct but nevertheless overlap. 
Types of Document Classification and Techniques: 

● Supervised Document Classification 

● Unsupervised Document Classification 

 
Supervised Document Classification: 
 
In supervised classification, the classification of documents is correctly 
determined by an external process (such as human feedback). 
Data set required for supervised document classification: 
Labelled dataset. 
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Unsupervised Document Classification: 
 
Unsupervised document classification, also known as document 
clustering, requires classification to be carried out totally without using 
outside data. Descriptor extraction and use are involved in document 
clustering. Word groups known as descriptors are used to characterise 
the contents of a cluster. In general, document clustering is viewed as a 
centralised process. Web document clustering for users of search engines 
is an example of document clustering. 
Data set required for unsupervised document classification: 
Unlabelled dataset. 
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Related Works: 
 
 

Centroid-Based Document Classification (Eui-Hong (Sam) Han and 
George Karypis):[1] 
 

• Dataset: fromWest Group, TREC-5, TREC-6, and TREC-7 
collections, Reuters-21578 text categorization, test collection 
Distribution 1.0, OHSUMEDcollection, and theWebACE project 
(WAP). 

 
• Model: Documents are represented using a vector space model. 

The cosine function is used in the vector-space model to calculate 
how similar two documents, di and dj, are to one another. The idea 
behind this model is to compute centroid vectors for each set of 
documents belonging to the same class. The learning-phase 
computational complexity of centroid-based classifiers is linear on 
the number of documents and number of terms in the training set. 
Here the time required to classify a document is O(km) where k is 
the no. of centroids and m is the no. of terms in that document. Here 
the performance is calculated by comparing with Naïve Bayes’ 

classifier, C4.5 and K-nearest neighbour classifier. 
 

• Results: 
 

We can see that the centroid-based scheme outperforms the others 
in 17, and the Naïve Bayes’ in 5 out of 23 data sets. 
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Multi-co-training for document classification using various 
document representations (Donghwa kim, Deokseong Seo, Suhyoun 
Cho and Pilsung Kang):[2] 

 

• Dataset: Reuters-21578, 20 Newsgroup, Ohsumed, Reuters-50-50 
and SemEval. 

 

• Model: Three document representation methods are used- LDA, TF-
IDF and Doc2Vec. After completing the document representation, 
the 3 classifiers are trained using the specified features based on 
labelled examples, and compute the confidence levels for their 
predictions. Here we also use the MCT (multi co training). The 
foundation of co-training is the idea that the entire feature set can 
be split into two mutually exclusive sets in the data space. It takes 
input as a vectorized document and gives the document label, the 
document represented as a latent variable. Two types of 
performance measuring parameters are used, that is, for SemEval 
dataset the average F1 score for positive and negative classes and 
for the other dataset the break-even point of precision and recall of 
each class. 

 

• Result: For both NB and RF, for all the class label ratios the 
proposed MCT achieved the highest classification performance. 
 
 

Document Classification by Topic Labelling (Swapnil Hingmire, 
Sandeep Chougule and Girish K. Palshikar): [3] 

 

• Dataset: Three real world text classification datasets are used to 
evaluate the effectiveness of the model. These are 20Newsgroup, 
SRAA: Simulated/Real/Aviation/Auto UseNet data and WebKB. 
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• Model: In this paper a Latent Dirichlet Allocation (LDA) and an 

extension of the algorithm based on the combination of EM 
algorithm and Naïve Bayes classifier (Classify LDA-EM) is produced 
for document classification in which labelled datasets are not 
required. For the improvement of the parameters of the naïve Bayes’ 

parameters, the relation between word co-occurrence knowledge 
and class label along with the EM iterations is used. Initially the 
corpus’ all the unlabelled documents are labelled using the 

ClassifyLDA algorithm and using these labelled documents naïve 
Bayes are built to estimate the class probabilities for each 
document. Then using these estimated class probabilities, we 
assign new class labels and a new naïve Bayes classifier is built. 
The process iterates and continues until the naïve Bayes classifier 
converges into a stable classifier. 
 

• Result: The ClassifyLDA-EM model achieves a very similar 
performance with the NB-EM model. The ClassifyLDA-EM model is 
better than ClassifyLDA and has a performance of 0.9 above for 
most of the datasets. The combination of naïve Bayes and EM 
reduces the effect of noisy labelled documents. 

. 

Document Classification with Distributions of Word Vectors (Chao 
Xing, Dong Wang, Xuewei Zhang, Chao Liu): [4] 

 

• Dataset: The used text database is published by sohu research 
center which involves 9 classes of web documents, including 
Chinese articles in the area of automobile, IT, finance, health, 
sports, tour, education, recruitment, culture and military. From the 
records 14301 documents were for training purpose, and the rest 
1809 documents for test. 
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• Method: Two proposed methods are the CSGMM model and the 
SSA model. In CSGMM the word vectors of a document class follow 
a Gaussian mixture distribution and can be modelled by a class-
specific GMM. 1st some unrecognised characters are removed from 
the document and then by SCWS word segmentation tool they are 
segmented into words. The skip-gram W2V model and produce 
word vectors are trained by the word2vec tool, and another tool is 
used in training of LDA. The 1st experiment is the average pooling 
approach where we use different classifiers. The W2V-based 
approach outperforms the LDA-based approach 

 

• Result: The CSGMM approach is less effective than the W2V 
baseline. The SSA model outperforms the W2V pooling approach 
and implies that the distribution of word vectors is a very good 
representation for documents. 
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Dataset Used: 
 
In our project we use our own dataset having 4450 rows and 9 columns 
names cites, authors, title, year, source, publisher, type, abstract, labelled 
data. 
As a primary input, we feed title and abstract to classify the document 
according to the type of the document. 
 

Screenshot of dataset - 
 

 
 
 

Dataset Link: 
 
https://drive.google.com/file/d/1a_OS_JTJlPXm4D04UstLLPSF5ewdY4F
H/view?usp=sharing 
 
  

https://drive.google.com/file/d/1a_OS_JTJlPXm4D04UstLLPSF5ewdY4FH/view?usp=sharing
https://drive.google.com/file/d/1a_OS_JTJlPXm4D04UstLLPSF5ewdY4FH/view?usp=sharing
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Pre-processing of dataset: 
 

● Data cleaning: 
After taking the CSV file as input first of all we clean the null values 
and invalid rows. With this data frame we further process. 
 

● Removing Stop Words and Punctuation: 

Some tokens are less important than others. For instance, common 
words such as “the” might not be very helpful for revealing the 
essential characteristics of a text. So usually it is a good idea to 
eliminate stop words and punctuation marks before doing further 
analysis. 
We here use a customised stop word list. With the standard stop 
word, we use some most commonly appearing words in all the 
documents. 
 

● Stemming and Lemmatization: 

Different tokens might carry out similar information (e.g. tokenization 
and tokenizing). And you can avoid calculating similar information 
repeatedly by reducing all tokens to its base form using various 
stemming and lemmatization dictionaries. 
 

● Computing term frequencies or tf-idf: 

After pre-processing the text data, you can then proceed to generate 
features. For document clustering, one of the most common ways 
to generate features for a document is to calculate the term 
frequencies of all its tokens. Although not perfect, these frequencies 
can usually provide some clues about the topic of the document. 

 
• Count Vectorization: 

 Count Vectorization involves counting the number of occurrences 
 each word appears in a document (i.e distinct text such as an 
 article, book, even a paragraph!). Python’s Sci-kit learn library has 
 a tool called CountVectorizer to accomplish this. 
 Example sentence: “The weather was wonderful today and I went 

 outside to enjoy the beautiful and sunny weather.” You can tell 
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 from the output below that the words “the”, “weather”, “and “and” 

 appeared twice while other words appeared once. That is what 
 Count Vectorization accomplishes. 
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Proposed Method: 
 
 

 
 

After pre-processing the dataset, we train our LDA (Latent Dirichlet 
allocation) model with the clean dataset. LDA is an unsupervised 
generative probabilistic model for collections of discrete data such as text 
documents. In LDA, each document is generated by choosing a 
distribution over topics and then choosing each word in the document from 
a topic selected according to the distribution. 
Our algorithm is based on generative property of LDA. Let us assume, we 
want to classify each document to one of the class labels from C = {1, 2, 
..., m}. Using LDA, Z = {z1, z2, ..., zT} topics are learnt on the document 
corpus D. Now an expert will assign a class label, i ∈ C to each topic zt ∈ 
Z based on its most prominent word. 
 
As we told before our model is semi supervised learning based, after pass 
term document matrix as input of LDA model we get some classes and 
the keyword of the classes by which they are been grouped. Then we 
match the keyword with our dictionary and labelled the class. Thus, our 
model works. 
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Figure 2: Concept of LDA 

 

The concept of LDA is presented in Figure 2. LDA has two main steps: 
topic distribution per document and word distribution per topic. First, 
based on the Dirichlet distribution with super parameter of α, the 

probability of the topic in the document is derived. Then, based on the 
Dirichlet distribution with super parameter of β, the probability of the 

word in the topic is derived. A common approach, Gibbs sampling, is 
implemented for approximate inference. In Figure 2 α is the parameter of 

the Dirichlet prior on the per-document topic distributions; β is the 

parameter of the Dirichlet prior on the per-topic word distribution. The 
perplexity (P) approach is used to determine the topic number K. An 
appropriate probability distribution has a relatively low perplexity. The 
perplexity (P) can be calculated by Eq.: 

 
where Nd earns word frequency in the d document. Wd,i  earns the nth 
word in the d document. 
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Document Classification Using Python: 

 

One of the most crucial jobs in natural language processing is text 
classification. It is the process of categorising text strings or documents 
according to the contents of the strings into several categories. 
 
Document classification has several uses, including automatically library 
management system, sentiment analysis, recharge paper labelling etc, 
 
Here, python will be used to analyse the problem in this case. Some 
libraries of python are used in Machine Learning and data analysis to 
solve the problem. 
Following are the steps required to create a document classification model 
in Python: 
 

● Importing Libraries 
● Importing The dataset 
● Text Pre-processing 
● Converting Text to Numbers 
● Training and Test Sets 
● Training document Classification Model and Predicting class of 

document as well as group the document. 
● Evaluating the Model 
● Saving and Loading the Model 

 
 
 

➔ Importing Libraries: 
 
import pandas as pd 
import numpy as np 
import nltk 
import string 
from sklearn.feature_extraction.text import CountVectorizer 
from sklearn.feature_extraction import text 
from sklearn.decomposition import LatentDirichletAllocation 
from gensim import corpora 
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from nltk.corpus import stopwords 
from nltk.stem.wordnet import WordNetLemmatizer 
from gensim.models import Word2Vec 

 
 

➔ Importing The dataset 
 
data = pd.read_csv("./test.csv") 
print(data.shape) 

 

➔ Text Pre-processing 
 
data_without_null_value = data['Abstract'].dropna() 
print(data_without_null_value.shape) 
new_stop_word = ['techniques', 'review', 'survey', 
'approach','introduction', 
'based','program','method','application','paper', 'development', 
'computer', 'field', 'technology', 'research', 'human','tool', 'problem', 
'algorithm', 'use','unit', 'device', 'invention', 'present', 'system','new', 
'analysis','book','input','overview','model','ha','used','use','using','first
','wa','study', 'statistic', 'tool', 'method', 'analytics','focus', 'need', 
'statistic', 'tool', 'method','part', 'chapter', 'area', 'medical', 'section', 
'application', 'embodiment'] 
new_stop_word_test = 
['image','processing','artifitial','intelligence','cloud','computing','mach
ine','learning'] 
my_stop_word = nltk.corpus.stopwords.words('english') 
my_stop_word.extend(new_stop_word) 
print(new_stop_word) 
list1 = data_without_null_value.tolist() 
stop = set(new_stop_word_test) 
print(stop) 
exclude = set(string.punctuation) 
lemma = WordNetLemmatizer() 
def clean(doc): 
stop_free = " ".join([i for i in doc.lower().split() if i in stop]) 
punc_free = ''.join(ch for ch in stop_free if ch not in exclude) 
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normalized = " ".join(lemma.lemmatize(word) for word in 
punc_free.split()) 
return normalized 
 
clean_corpus = [clean(doc).split() for doc in list1] 
df_list = [] 
for ele in clean_corpus: 
str = "" 
for word in ele: 
str+=word+" " 
df_list.append(str) 
 
df = pd.DataFrame(df_list,columns =['final_column']) 

 
 

➔ Training document Classification Model and Predicting class of 
document as well as group the document 
 
cv = CountVectorizer(max_df=0.95,min_df=2) 
newdata = cv.fit_transform(df["final_column"].values.astype('U')) 
newdata.shape 
lda = LatentDirichletAllocation(n_components=5,random_state=50) 
lda.fit(newdata) 
 

 

➔ Evaluating the Model 
 
single_topic=lda.components_[0] 
single_topic.argsort() 
for index,topic in enumerate(lda.components_): 
print(f'Top word for topic: {index}') 
print([cv.get_feature_names()[i] for i in topic.argsort()[-10:]]) 
print("\n") 
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Experiment and result: 
 

Top word for topic: Image Processing 
['learning', 'computing', 'machine', 'processing', 'image'] 
 
 
Top word for topic: Artificial Intelligence 
[' artificial ', 'processing', 'computing', 'intelligence', 'learning'] 
 
 
Top word for topic: Data Science 
['database’, 'computing', 'science', ' processing', 'analysis'] 
 
 
Top word for topic: Machine Learning 
['intelligence', 'machine', 'learning', 'processing', 'machine'] 
 
 
Top word for topic: Cloud Computing 
['cloud', 'computing', 'intelligence', 'learning', 'networking'] 
 
 
 

By following this method, we expect better accurate result than the 
algorithm available on the internet. 
 
  



22 | P a g e  
 

Conclusion: 
 
In this project we propose a novel, inexpensive document classification 
algorithm based on semi supervised learning. Here we used LDA model 
to classify the documents into different classes. We showed that it has 
several advantages over supervised and unsupervised learning 
technique. Our approach is well suited for the domains where mapping 
establishment is easier between topics and class labels. 
However, it has certain limitations which guide us in further research 
directions. In future we would like to experiment our model with other well-
known datasets and improve our model by exploring other branches and 
method of text mining and Natural Language Processing. 
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Abstract 

 The easiest way for two persons to communicate is through speech. The voice of 

each person differs from other, as voice of a person contains some unique 

features. These features can differentiate the voice of two people.  Using feature 

extraction techniques to extract unique features then combining with various 

models is the way one can identify speakers through machine learning. Many 

researchers have proposed their way of thinking through implementing different 

techniques which includes the combination of feature extraction techniques and 

classification models. 

We proposed a novel approach which can be used to uniquely identify a speaker 

through their voice sample. So, our speaker recognition system uses Deep Neural 

Networks as classifiers and MFCC, LFCC, LPC, Rasta-PLP as feature extraction 

techniques. The used dataset is a custom dataset consisting of 10 different 

speakers, speaking Bengali or English mixed with Bengali language and recorded 

in a natural environment. Our proposed method achieved 98% accuracy, which is 

better from previous works. 
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Introduction 

Speech is the major part of human communication. It is a one dimensional 

function of time. Speech contains many different levels of information such that 

gender, age , emotion , identification of speaker etc. Like fingerprints , iris and 

face, every person’s voice also contains some unique features. So speech can also 

be used to identify/recognise a person as a biometric identifier.  

We can extract different features like MFCC, LFCC, LPCC ,RPLP ,PNCC from a given 

speech signal. These features contain unique sequences which can be used to 

identify speakers.  

In recent times Deep Neural Networks along with ANN, RNN, SVM and CNN 

performed very accurately in Speaker Identification. Combining Deep Neural 

Networks along with the various feature extraction algorithms we can build more 

accurate and efficient models which can identify speakers in real time. 

 

 

Related Works 

In recent years a lot of works have been done in Speaker Identification using 

different techniques and methods.  

 

i. Speaker Identification Using a Hybrid CNN-MFCC Approach (1): The 

architecture used here is CNN combined with MFCC. It identifies speakers without 

converting it into text and in a noisy environment. It uses DNN for classification 

and gets an accuracy of 87.5% on a self-made dataset of 60 speakers. CNN is very 

helpful as it can do both feature extraction and classification. Speaker 

acknowledgement is done using a neural network here. The used dataset is purely 

homemade and contains background noises. The reason to use this kind of 

dataset is to observe real life occurring voices. The voices are taken from 

classmates and YouTube speaking in Urdu. 20 seconds is the time length of each 

of these. At first a comparison between 2 approaches is done then combined into 

a better hybrid approach. First the CNN based approach is used and then the 

approach that uses MFCC as feature extractor and DNN as classifier. Individually, 

promising accuracy was not found in the results for an unknown speaker. So, in a 
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hybrid approach the feature of both the models is combined and then DNN is 

used on that single feature file. According to the results, the CNN approach 

yielded 75% accuracy and 77.5% precision, the MFCC-DNN approach yielded 80% 

accuracy and 85% precision, the hybrid approach yielded 87.5% accuracy and 91% 

precision. 

ii. Speaker Identification by GMM based i Vector (2): A Gaussian mixture model 

is being used which is built by extracting some acoustic feature vectors from the 

voice. Compression on the basis of an i-vector yields better predicted results. An 

order pair of speakers is created where the unknown speaker resides in the first 

co-ordinate and the test speaker resides in the second coordinate. Voices which 

are independent of text and language are identified by vocal tract. From the 

existing speaker model, an unknown speaker is identified using a vocal track as it 

is identified first for identifying the unknown speaker. It gives score prediction by 

following the postulates of Bhattacharyya. The GMM creation is done by 

quantizing the analog signals and then sampling the quantized results for doing 

pre emphasis on the previous sampled results and then windowing is done and on 

the result FFT is applied and then some band pass filters are applied for getting an 

average value and after that MFCC is used for feature extraction from it to get the 

final GMM result. A probabilistic compression process is applied by using linearity 

of GMM and generative equations. Simulating the results is being done in two 

stages. The first stage is thresholding and the next stage is cosine based score 

predicting. For a particular value of threshold, false accepts can be detected and 

for the highest predicted score this model yields better results. 

 

iii. A review on Deep Learning approaches in Speaker Identification (3): Deep 

learning approaches are more successful in speech recognition and identifying the 

speaker, than the traditional approaches. The paper aims to promote deep 

learning implementation techniques for identifying the speaker. It categorized 

various applications and implementations of Deep Learning (DL) according to the 

process of identifying a speaker. Deep Neural Network (DNN) is a layer-greedy 

training technique to train multiple neural networks (NN) of hidden layers, at 

least three. The method of training DNN is known as Deep Learning (DL). SID 

(Speaker Identification) is a Natural Language Processing (NLP) technique. Major 
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implementations of Deep Learning are CNN, also known as Convolutional Neural 

Network, DBN, also known as Deep Belief Networks and SAE, also known as 

Stacked Auto Encoders. Speaker Identification can be distinguished as two 

categories. In the first category, identification is done based on the speaker's 

voice print which is further categorized as a closed set in which the speaker is 

verified with some existing voice prints and an open set in which a new speaker is 

verified. In the second category, identification is done based on the level of user 

control which is further categorized as text dependent and text independent. The 

two phases of the Speaker Identification process are, training phase and matching 

phase. At the training phase, the speaker's voice prints are taken for feature 

extraction and then a model is trained based on those features. At the matching 

phase, test speaker’s voice prints are taken and the features are extracted and 

then it is matched with the extracted features of the trained model. GMM 

(Gaussian Mixture Model) were useful for text independent matching and HMM 

(Hidden Markov Model) were used for text dependent. There are three categories 

in which speakers can be identified using DNN. In the first category, DNN is used 

as a feature extractor and then GMM can be used for matching. In the second 

category, DNN is used as a classifier for matching and MFCC can be used for 

feature extraction. In the third category, DNN is used for the entire feature 

extraction and matching in the Speaker Identification process. Here PCA (Principal 

Component Analysis) is often used for dimensionality reduction. Stacked 

Bottleneck Features (SBN) is also used for dimensionality reduction. The 

Bottleneck layer has significantly lower dimensionality as two cascading Neural 

Networks are used. i-vector based approaches also give food results in the field of 

Speaker Identification. DL can be used to extract i-vectors as well as a classifier 

after extracting the i-vectors. Unsupervised Deep Belief Networks (UDBN) are 

suitable for unknown Speaker Identification which uses i-vectors. 

 

iv. Comparative Study of Different Techniques in Speaker Recognition: Review 

(4): Speakers are always recognised by the individual information which is already 

present in their speech signals. Speech gives information about the emotion and 

identity of the speaker. Every human voice has unique vocal characteristics like 

pitch, frequency, and tone, which has to be extracted and then enrolled by 
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training the voice model and then acknowledged or confirmed. Feature extraction 

is the technique in which distinctive elements are distinguished from the 

information set. It is done after the pre-processing. A basic speech recognition 

system has the input speech signal which is pre-processed and then features are 

extracted for classification and after that, a decision for speaker recognition is 

taken. MFCC is the most popular feature extraction technique. It is the classical 

approach for analyzing speech signals. MFCC has a high rate of performance and 

low complexity. LPC system is used to decide fundamental speech parameters. 

Previous speech tests are blended and approximated. LPC technique is reliable 

and accurate for providing parameters for representing vocal tract. LPC has good 

computational speed and encodes speech at low bitrate. DTW algorithm is used 

to determine similarities between two time series. It depends on element 

programming. Lt is a coordinate acknowledgement strategy. Delta and double 

delta of MFCC features can also be used as extracting techniques. For 

classification GMM, ANN and SVM can be used. GMM is useful when less memory 

and dataset are used. ANN is useful when extracting features and modeling is 

combined into a single network. SVM is effective in binary classification. 

 

v. Speaker Verification using Convolutional Neural Networks (5): The developed 

architecture for speaker verification is a CNN based architecture which captures 

and discards the information of the speakers and non-speakers simultaneously. 

Background model is created by training to differentiate between speakers. 

Previous approaches averaged the results from the background model. The 

problem is overturned here by using the Siamese framework for fine tuning the 

trained model. Discriminative feature space is generated for differentiating the 

same and different speakers. This method outperforms the previously formed 

traditional methods for verification. Three phases are involved in the general 

procedure for speaker verification namely: i) Development ii) Enrolment iii) 

Evaluation. In this work, Siamese Neural Network is used to operate. Public 

VoxCeleb dataset is used for the experiments. Here, 140000 utterances are there 

for 1211 speakers and for testing there are 6000 utterances for 40 speakers. The 

audios have different ethnicities, accents and also have background chatter, 

channel noise, overlapping speech and different recording qualities. In the input 
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pipeline, the SpeechPy library is used for feature extraction. VGG-M architecture 

is being used and the size is being reduced for training it faster. In time 

dimension, performing pooling degraded the performance. The Siamese 

architecture is used while verifying which consists of two identical CNNs. The 

general idea behind this is if there are two pairs which belong to the same identity 

then the common feature subspace distance would be close. TensorFLow is used 

and the model is trained on the NVIDIA Pascal GPU. GMM-UBM and I-vectors 

models have been used for comparison. EER is the Equal Error Rate which is the 

least for this architecture as compared to other models. The EER result is 10.5. 

 

vi. Text-independent speaker recognition using LSTM-RNN and speech 

enhancement (6): In the given paper speaker is recognised in a text independent 

manner in presence of noise and reverberation. For feature extraction, MFCC, 

spectrum and log spectrum are used. For classification, LSTM-RNN (Long-Short 

Term Memory Recurrent Neural Network) is used. When MFCC is used, 

recognition rate is 95.33%, when spectrum or log spectrum is used, recognition 

rate is 98.7%. Spectral subtraction and wavelet de noising, speech enhancement 

techniques are used for improving the performance of recognition. The DNN is 

less effective than LSTM-RNN in the acousting model. RNNs are cyclic. MFCC 

techniques are sensitive to external noises. Here spectrum and log spectrum are 

used as extracting features and then compared to MFCC with and without noise. 

Short Time Fourier Transform (STFT) is applied on the signal for computing the 

spectrogram. A RNN is a feed forward network and it faces vanishing gradient 

problem. It consists of one input layer, one output layer and 1-2 hidden layers. 

The system decides the output based on the previous and on the present inputs. 

Noise reduction is the key point of speech enhancement which can be achieved 

by techniques like spectral subtraction and wavelet de noising. The proposed 

system recognises speakers from any given spoken phrases. At first the speech 

signals are pre-processed and used as input for LSTM-RNN. Then some features 

are extracted for training the LSTM-RNN. The data used here is a subset of 

Chinese Mandarin Corpus Dataset. This dataset was recorded using cell phones. A 

total of 100 utterances from 5 female speakers were taken, from which 70 were 

used for training and 30 for testing. 3 seconds reverberation time was used. 



13 
 

Accuracy was best when spectral subtraction was at 30 dB. When the utterances 

are undistorted, LSTM-RNN had an accuracy of 98.7% and when distorted, using 

spectrum features, 90% accuracy was achieved and when reverberation was 

added, using spectrum features 62.7% accuracy was achieved. 

 

vii. Support Vector Machines Using GMM Supervectors for Speaker Verification 

(7): In speaker recognition, GMMs are extremely successful. GMM Mean Super 

vectors are formed by stacking the means from the output of the GMM model. 

The GMM super vector in a SVM classifier is used here. Two new SVM kernels are 

proposed which are based on the GMM models’ distance metrics. Speaker 

recognition is a two-class problem, so is SVM, which is a two-class classifier. Two 

natural methods are shown for calculating the distance between GMM super 

vectors. The ideal outputs for SVM are either 1 or -1 and it depends upon the 

support vector whether it lies in class 0 or 1. The training of the GMM UBM is 

performed by MAP adaptation. The first proposed kernel is the GMM Super 

vector Linear Kernel. Here, only a single inner product has to be computed 

between GMM and target model for obtaining a score. The second proposed 

kernel is GMM L2 Inner Product Kernel. Here, the assumption is that mixture 

components are far from each other. It uses inner products of function space. 

Experiments are performed on the 2005 NIST Speaker Recognition (SRE) corpus. 

EER (Equal Error Rate) and minDCF (minimum Decision Cost Value) are used as 

metrics for evaluation. RASTA filtering is used for processing Cepstral vectors. 8 

GMM super vectors from eight conversations were produced for target speaker 

enrolment. Model compaction was applied for the Linear Kernel for obtaining a 

smaller representation. The determinant was discarded due to ill conditioning in 

the L2 Inner Product Kernel. Standard GMM configuration is outperformed by the 

Linear GMM Super vector kernel. 

 

viii. An extreme learning machine approach for speaker recognition (8): Extreme 

Learning Machine (ELM) is used in this paper for verification of text independent 

speakers and is compared to the SVM classifier. ELM are extremely fast learners. 

ELSDSR corpus database is used and MFCC was extracted as input for ELM and 

SVM. Variants of ELM are, i) Optimization based ELM, ii) Regularized ELM, iii) 
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Kernelized ELM. They can run faster than SVM, Optimization based ELM is very 

much similar to SVM but it does the work with fewer optimization constraints. For 

making the resultant solution stabler, a positive value of 1/λ is added while 

calculating the output weights in the Regularized ELM. Kernelized ELM comes into 

play when the feature mapping of the hidden layer is unknown. The user doesn’t 

need to know the feature space and its dimensionality. From the database ELSDSR 

(English Language Speech Database for Speaker Recognition) corpus voice 

messages were collected from 22 speakers of age varying from 24 to 63. The 

training set had 154 utterances and the testing set had 44 utterances. Training 

data had a duration of 83s each and testing data had a duration of 17.6s each. 

After MFCC, the speech signals from the 20 speakers were converted to 28 

dimensional samples. The evaluation of SVM and ELM classifiers and its variants 

had two stages. First stage builds three classifiers, SVM, Optimised based ELM and 

Regularized ELM. Second stage compares the performance of the classifiers with 

the ROC curve. Both Optimized ELM and Regularized ELM are found to spend less 

time than SVM for training. Optimized ELM are much better in classes 7 to 10 and 

Regularized ELM are better for all classes 1 to 10. Kernelized ELM classifiers spend 

least training time for all classes. So, it can be concluded that ELM classifiers and 

its variants have better performance than SVM classifiers. 

 

ix. A Voice Identification System Using Hidden Markov Model (9): In this 

experiment MFCC technique has been used over the voice signals to extract 

features and a set of feature vectors was created. To train the and classify the 

features The Vector Quantization techniques were used. 

A Hidden Markov Model is a statistical Markov Model in which the system being 

modeled is assumed to be a Markov process with unobserved states.  

The system was mainly divided into two modules- a) Voice recognition b) Speech 

Recognition. 

Modeling: The modeling was done over the features extracted from the mfcc and 

vq methods. For each HMM state there may be a set of output symbols which can 

be described as output probabilities, and a  finite number of states. A set of 

probabilities known as transition probabilities controls the relation between one 

process and the transitions among the states 
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 An observation is produced by the other process representing the current state, 

for each instance of time while assuming the process to be in some state . 

Result: For the result an one dimensional power spectrum was plotted which 

indicates power of a signal at each frequency that it contains. With this model 

Speech Recognition has been accomplished with a success rate of 90% 

 

 

Paper Name Writers Method 
Used 

Dataset Result 

Speaker 
Identification 
Using a Hybrid 
CNN-MFCC 
Approach  

i) Aweem Ashar, ii) 
Muhammud Shahid 
Bhatti, iii) Usama 
Mushtaq 

CNN-
MFCC 

Custom Dataset CNN: Accuracy-
73% Precision-
77.5% 
MFCC-DNN: 
Accuracy-80% 
Precision-85% 
CNN-MFCC: 
Accuracy-87.5% 
Precision-91% 

Text-independent 
speaker 
recognition using 
LSTM-RNN 
and speech 
enhancement 

i) Samia Abd El-
Moneim, 
ii) M. A. Nassar, 
iii)Moawad I. Dessouky , 
iv) Nabil A. Ismail, 
v) Adel S. El-Fishawy,  
vi) Fathi E. Abd El-
Samie  

LSTM-
RNN 

Chinese 
Mandarin 
Corpus Dataset 

i) using MFCC: 
Accuracy -95.33% 
ii) using Log 
Spectrum: 
Accuracy-98.7% 
iii) using spectrum: 
Accuracy-98.7% 

An extreme 
learning machine 
approach for 
speaker 
recognition 

i) Yuan Lan  
ii) Zongjiang Hu 
 iii) Yeng Chai Soh 
iv) Guang-Bin Huang  

SVM-
ELM 

English 
Language 
Speech Dataset 
for Speaker 
Recognition 

i) using 100 
positive sample 
and 900 negative 
sample: Accuracy-
79% 
ii) using 100 
positive sample 
and 90 negative 
samples: 
Accuracy:84% 

Speaker 
Verification using 
Convolutional 
Neural Networks  

Hossein Salehghaffari CNN VoXCeleb i) GMM-UBM: 
EER(equal error 
rate)-17.1 
ii) I-Vectors :EER-
12.8 
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iii) I-vectors PLDA: 
EER:11.5 
iv) CNN-2048: 
EER-11.3 
v) CNN-256 + Pair 
Selection: EER: 
10.5 

Support Vector 
Machines Using 
GMM 
Supervectors for 
Speaker 
Verification  

i) W. M. Campbell, 
ii) D. E. Sturim, 
iii) D. A. Reynolds 

GMM  2005 NIST 
Speaker 
Recognition 
Corpus  

i) GMM-UBM:EER-
5.68% 
ii) GMM-Atnorm: 
EER-4.03% 
iii) GMM Super 
L^2: EER-4.31% 
iv) GMM Super 
Linear:EER-3.77% 

Speaker 
Identification by 
GMM based i-
Vector 

Soumen Kanrar GMM 
based i 
Vector 

Custom Dataset 
 

A review on Deep 
Learning 
approaches in 
Speaker 
Identification  

i) Sreenivas Sremath 
Tirumala 
ii) Seyed Reza 
Shahamiri2  

DNN 
  

Comparative 
Study of Different 
Techniques in 
Speaker 
Recognition: 
Review  

i) Sonali T. Saste 
ii)  Prof.S.M.Jagdale  

   

A Voice 
Identification 
System using 
Hidden 
Markov Model  

i) T. K. Das 
ii) Khalid M. O. Nahar 

Hidden 
Markov 
Model 

Custom Dataset Accuracy: 90% 

 

Table 1: Summary Of Related Works 

 

Dataset: 

For this project we created our own dataset. We took voices from 10 different 

people, aged in between 18 to 50. For each person there are 750 audio samples 

with duration of 4 seconds each. All the samples are in Bengali or Bengali-English 
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mixed language. There are 5 male speakers and 5 female speakers, which makes 

the gender ratio 1:1 in this dataset. All the voice samples are collected in natural 

environmental conditions using different types of recording devices. Some of the 

audios are recorded using dual channel and some are recorded using mono 

channel. Thus we can say the dataset is a close representation of human voice 

audio we hear in our daily life.  

 

Feature Extraction: 

In this project we worked with four types of features, these are Mel-frequency 

cepstral coefficients(MFCCs), Linear prediction coefficients(LPCs), Linear 

Frequency Cepstral Coefficients(LFCCs), Rasta Perceptual Linear Prediction 

coefficients(RPLP).   

 

i. MFCC: The MFCC feature extraction technique basically includes windowing the 

signal, applying the DFT, taking the log of the magnitude, and then warping the 

frequencies on a Mel scale, followed by applying the inverse DCT. Mel Frequency 

Cepstral represents short-term power spectrum of a sound . In this paper we 

extracted 20 mfccs for each audio clip using Librosa library. 

 
Fig 1: MFCC Spectrogram  

ii. LPC: LPC imitates the human vocal tract and gives robust speech feature. It 

evaluates the speech signal by approximating the formants, getting rid of its 

effects from the speech signal and estimate the concentration and frequency of 

the left behind residue. Linear Prediction Coefficients calculate power spectrum 
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of a given audio signal. In this paper we extracted 13 lpcs for each audio clip using 

Spafe library. 

 

 
Fig 2: LPC Spectrogram  

 

iii. LFCC: The computation of LFCC features can be described; firstly, Fast Fourier 

Transform (FFT) is applied to windowed signal for converting each frame of N 

samples from the time domain into the frequency domain. After the FFT block, 

the power coefficients are filtered by linear frequency filter banks. Finally, the log 

Mel spectrum is converted into time using Discrete Cosine Transform (DCT). 

Linear Frequency Cepstral Coefficients are very identical to MFCCs, except it 

covers all frequency ranges equally and gives them equal importance.  In this 

paper we extracted 13 lfccs for each audio clip using Spafe library. 
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Fig 3: LFCC Spectrogram 

 

iv. RASTA PLP: A special band-pass filter was added to each frequency subband in 

traditional PLP algorithm in order to smooth out short-term noise variations and 

to remove any constant offset in the speech channel. Rasta PLP analysis is done 

using Single Value Decomposition. In this paper we extracted 13 Rasta PLP 

coefficients for each audio clip using the Spafe library. 

 

Fig 4: RASTA-PLP Spectrogram 

 

 

 

 

 

 



20 
 

Proposed Model 

 

First we created four fully connected Deep Neural Network Models. Then we 

combined these models for ensemble learning, where the mode of the 

predictions from all four models will be counted as the final prediction. Thus it 

increases the correct prediction probability.   

 

Model 1: It has two 2D Convolutional Layers with 128 perceptrons each which are 

followed by another two 2D Convolutional Layers with 64 perceptrons each. Then 

It has two fully connected dense layers with 64 perceptrons and 32 perceptrons 

respectively and an output layer with 10 possible outcomes .  

We used the MFCCs as inputs for this model. After 50 epochs this model gives 

training accuracy of 98.95% with loss 0.0301 and validation accuracy of 98.93% 

with validation loss 0.0413. 

 

 
Fig 5: MODEL 1 Accuracy Plot 
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Fig 6: MODEL 1 Loss Plot 

 

Model 2: It has one 2D Convolutional Layer with 128 perceptrons  which is 

followed by another  two 2D Convolutional Layers with 64 perceptrons and 

another 2D Convolutional Layer with 32 perceptrons. Then It has a fully 

connected dense layer with 32 neurons and an output layer . 

 We used the LFCCs as inputs for this model. After 100 epochs this model gives 

training accuracy of 97.56% with loss 0.0742 and validation accuracy of 97.03% 

with validation loss 0.1336. 

 

 
Fig 7: MODEL 2 Accuracy Plot 
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Fig 8: MODEL 2 Loss Plot 

 

Model 3: It has a 2D Convolutional Layer with 128 perceptrons  followed by two  

2D Convolutional Layers with 64 perceptrons and 32 perceptrons respectively. 

Then It has two fully connected dense layers with 64 and 32 perceptrons, and an 

output layer with 10 possible outcomes .  

We used the LPCs as inputs for this model. After 50 epochs this model gives 

training accuracy of 97.59% with loss 0.0629 and validation accuracy of 95.63% 

with validation loss 0.1469. 

 

 
Fig 9: MODEL 3 Accuracy Plot 
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Fig 10: MODEL 3 Loss Plot 

 

Model 4: It has a 2D Convolutional Layer with 128 perceptrons each which is 

followed by another two  2D Convolutional Layers with 64 perceptrons each. Then 

It has two fully connected dense layers with 64  and 32 perceptrons respectively. 

Then it has an output layer. 

We used the Rasta-PLPs as inputs for this model. After 50 epochs this model gives 

training accuracy of 96.91% with loss 0.0911 and validation accuracy of 97.76% 

with validation loss 0.0744. 

 

 
Fig 11: MODEL 4 Accuracy Plot 
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Fig 12: MODEL 4 Loss Plot 

 

Appling Ensemble Technique:  In ensemble technique we combine results of 

different machine learning models to provide a final output. In this project, we 

will combine the outputs of above mentioned models to predict a final output. 

For a given audio sample we will extract all the four above mentioned features 

and feed those features to their respective model for predictions. Then we 

consider the mode of the predictions as the final prediction for given audio data.  

We created a end to end process for Speaker Identification where we will provide 

a voice sample as input, and then the program will extract MFCC, LPC, LFCC and 

RASTA PLP from that audio and send those features to their respected Machine 

Learning Model for prediction. At last we will combine those output to make the 

final prediction.  
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Fig 13: Diagram of Ensemble Learning Algorithm 

 

 

Result 

 

Feature  Epochs  Training 
Accuracy 

Validati
on 

Accura
cy 

MFCC 50  98.95% 98.93% 

LFCC 100 97.56% 97.03% 

LPC 50 97.59% 95.63% 

RPLP 50 96.91% 97.76% 

Table 2: Result of Different Models 

 

The accuracy will increase further after implementing the Ensemble Learning, as 

the probability of getting wrong predictions will be reduced in this process. 
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Conclusion 

 

The model we proposed consists of Deep Neural Networks , which take MFCC, 

LFCC, LPC and Rasta-PLP spectrograms as input and achieve validation accuracy of 

98.93%, 97.03%, 95.63% and 97.76% respectively.  Further using ensemble 

learning techniques we can combine the outputs of these models and identify the 

speaker more accurately. Currently we worked with a dataset of 10 unique 

speakers; in future we can expand the dataset to create a more general and 

accurate speaker identification system which can identify speakers in real time.  
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PROBLEM DESCRIPTION 
 

Reversible Data Hiding refers to the process of extracting host media from marked media 

without causing any distortion to the host media. It is essential, especially in circumstances 

where even minimal distortion to the host media is unacceptable as it may lead to incorrect 

analysis. In this context, we have proposed a novel method for reversible data hiding in medical 

images which is based on embedding in hybrid domain. The methodology involves, dividing 

the host image in various sub-samples. A 13-7 Transform is applied on the sub-sampled images 

to select the appropriate frequency bands for embedding the sensitive information. A thorough 

comparison with some of the traditional algorithms in terms of Peak Signal to Noise Ratio is 

present. Experimental data suggests that our method exceeds the existing methodologies both 

in terms of payload and distortion post embedding 
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CHAPTER 1: INTRODUCTION 
 

1.1) Steganography:  

 

Steganography is the technique of hiding data in different types of cover media like 

text, audio, image, video etc. Image steganography uses digital images as cover media 

and after embedding our secret information, or better known as the load, stego image 

is produced. To hide load data either cover image pixels are directly modified with 

secret data or the image pixels are first transformed using different transform domain 

techniques and then the resulting coefficients are utilized to store secret information.  

 

The word ‘Steganography’ is derived from an amalgamation of two Greek words: 

‘Steganos’ and ‘Graphiya’. Steganos means covered and graphiya mean writing so the 

word steganography when derived from Greek mean covered writing or hidden writing. 

 

Exploring the past we can see references of this concept even in ancient history as well. 

Herodotus is a famous ancient Greek historian in 441 B.C. mentions few examples of 

this modern day hidden writing technique, i.e., steganography in his work of histories. 

When king Histiaeus shaved the head of his most trusted servant and marked the secret 

message on his scalp and sending him to the receiver of the message once his hairs was 

grown. This is even one of the most important application of steganography for 

espionage or secret information passing.  

 

This leads us to look at steganography as a better alternative to cryptography where we 

send an encrypted message using a key and the transmitted sequence of characters is 

used to get the hidden message. But the problem here stays that if this encrypted 

message gets intercepted then the hidden message may also be compromised, but in 

case of steganography it is very tough to identify and distinguish a stego image from a 

cover image therefore increasing the secrecy and privacy while transmitting the 

information. 
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1.1.1) Basic Model of Steganography:  

Message embedding and stego image preparation outline:- 

 

 
Fig. 1 

 

 
Message extraction outline: 
 

 
Fig. 2 

 

1.1.2) Reversible data hiding: 

 

The embedded image when received is processed and the hidden information, known 

as the load, is extracted as shown in fig. 2. Generally, at the destination end the load is 

extracted from the stego image. The most important concern at that point is the perfect 

reconstruction of the load but the recovery of the cover image is not of much concern. 

If a case is taken where we are not only concerned with the reconstruction of the load, 

that is the hidden data, but also the perfect reversal of the stego image to cover image 
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after extraction. Then this is known as reversible image steganography or Reversible 

Data Hiding (RDH).  

If we denote this pictorially : 

 

 
Fig. 3 

So, we can see here from fig.1, fig.2 and fig. 3 the difference between reversible data 

hiding (reversible image steganography) and normal image steganography. 

 

1.1.3) Scope of RDH: 

 

The scope of field of application and the immense importance of this method is huge in 

real world. Reversible data hiding is a emerging to be very important in the field of 

Defence, where we need to send some hidden data along with a image, then many times 

the complete reversal of the cover image is required, here RDH plays a huge role. RDH 

is also emerging to be very important in the case for tele-medicine. EPR (electronic 

patient record), is sometimes needed to be transferred along with medical images such 

as MRI, or CAT-scan, or else. Since it is a patient’s medical record it needs to be secret, 

so steganography is used for this, but RDH is used here as we must get our cover image 

which is the MRI or any other medical image for diagnosis. The paper covers and 

explores this particular domain, i.e., the use of reversible data hiding in tele-medicine, 

or medical images.  
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1.1.4) Types of Image steganography 

Image steganaographic methods can be broadly classified in two : 

 

1.1.5.1) Spatial Domain Steganography: Here in this method of steganography the bits 

from the bit string of the secret data is directly embedded in the pixels of the image 

itself. Papers [9][11][12] have put forward their novel method for RDH using the spatial 

domain and more about their works have been discussed in the next section of related 

works which will help understand this method better and further. 

 

Some popular spatial domain techniques are:-  

 LSB (Least Significant Bit) substitution 

 PVD (Pixel Value Differenting) 

 Difference Image Histogram (DIH) 

 

1.1.5.2) Transform Domain Method: In this method the image is first taken into their 

transform domain and then the frequencies are changed to embed the secret data, i.e., 

the load.  

 

 
Fig. 4 

 
Fig. 5 
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1.1.5) Performance metrices for image steganography: 

 

There are some methods and metrices used to evaluate the quality of image 

steganography. The methods that we will be discussing will all be assessing a different 

aspect of the results obtained after embedding and extraction. 

 

1.1.5.1) Payload Capacity: 

              This refers to the volume of the load that has been embedded into the cover 

image. It is measured in BPP, Bits Per Pixel. Where  

 

BPP = (Number of Bits embedded/Total number of pixels) 

 

1.1.5.2) Mean Square Error: 

    MSE is the average of the square of the pixel by pixel difference between the 

pixels of the stego image and the cover image after embedding. 

 

𝑀𝑆𝐸 =  (𝑚𝑥𝑛) [𝐼(𝑖, 𝑗) −𝑘(𝑖, 𝑗)]  

 

Lower values of Mean Square Error denotes a good quality embedding 

 

1.1.5.3) Peak Signal To Noise Ratio (PSNR) : 

It is the ratio between the maximum possible value of a signal (pixel in case of 

image referred as MAX) and the power of distorting noise (MSE). 

 
 

𝑃𝑆𝑁𝑅 = 10 ∗ 𝑙𝑜𝑔 ( 𝑀𝐴𝑋 /𝑀𝑆𝐸) 
 
 

High values of PSNR denotes that the steganography is good. 
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1.1.5.4) Structured Similarity Index Measurement (SSIM):  

 

SSIM is a metric of comparison to check the similarity between the cover image 

and stego-image. It measures the perceptual difference between the two images. 

 

1.1.6) DICOM images: 

 

[1] Medical images are unlike normal 8-bit grayscale images or JPEG colour images. 

Medical images are in the Digital Imaging and Communication on Medicine, DICOM 

format. Where a normal 8-bit grayscale image has it’s pixel value range in 0 to 255, 

grayscale DICOM images in 12-bit format has pixel values in range 0 to 4095 and in 

range 0 to 65535 in 16-bit format. 

 

 

1.2) Wavelet Transform : 

 

Wavelet transforms are used to transform images from spatial domain to transform 

domain. Unlike Spatial domain embedding techniques, where data is embedded by 

modifying the intensity levels directly, in transform domain-based data hiding 

techniques, data is hidden in the in the transform coefficients. Thus, these algorithms 

provide higher robustness as compared to spatial domain based embedding techniques. 

Also, this transformation support reversibility, which becomes crucial in reversible 

image steganography. But the notable transformation methods such as DCT (Discrete 

Cosine Transform) and DWT (Discrete Wavelet Transform) cannot be used for this 

purpose. These methods require floating point calculations which leads to higher 

computational complexity. Apart from that, there is chance of loss of information 

especially during extraction of data.  

 

To avoid such inconvenience, Integer to Integer Wavelet Transforms are used. These 

are derived from linear wavelet functions which support invertibility without any loss 

of data. Also, the lack of floating-point calculation make these computationally simple. 

Integer wavelet Transform divide the image in four sub bands LL, LH,  HL,HH. LL 

refer to the approximate coefficient of the image, HL and LH are the horizontal and 

vertical coefficients respectively and HH represents the diagonal detailed feature of the 
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image. in order to transform 2D image, we need to implement the transformation twice, 

once along the rows and once along the columns. 

 

 
Fig.6 

 

  



13 
 

CHAPTER 2: RELATED WORKS 
 

Parah et. Al. [2] proposes a novel method for reversible medical image steganography in their 

paper. At first, each pixel of the original image is transformed into a block of 2x2 block. This 

up-sampling is performed in order to ensure reversibility. To add to the security of the model 

the information is encrypted using non-linear dynamics of chaos. Along with the data, a fragile 

watermark is used to ensure authenticity of the content. Beside all of these, checksum for each 

block is calculated and embedded to detect any tampers in the stego image and also for 

localization. The data is embedded using LSB method. A seed or pivoted element is left in each 

block to ensure reversibility of the original image. The embedding is done in rest of the pixels 

of the block. At the extraction step, the data is first recovered followed by the original image. 

The checksum is used to detect the integrity of the original images, while the watermark is used 

to check the integrity of the information. 

 

Patel et. Al. proposes a novel method for reversible medical image steganography in [3] this 

paper. The author proposes a cloud storage-based algorithm to enhance security and 

management. Four cloud services are required which stores patient number, X-ray image, 

patient number, pathological report, patient number, key, patient number, Stego image. While 

to maintain reversibility, the concept of Region of Interest and Region of Non-Interest. In this 

method, the information is embedded in the carrier image by using LSB steganography. The 

medical image and patient’s information are stored in two different clouds to enhance security. 

The proposed scheme can be subdivided mainly into four stages. The first part is Segmentation, 

where the medical image is divided into four RONI and one ROI. This process involves 

separation the foreground and background using edge detection. Using the information of 

RONIs, a secret key is generated. This key is of the form of a 4x4 matrix which is obtained by 

using gray-thresholding. This key contains the starting coordinates of four RONIs and is stored 

in another cloud. Following this, the RONI regions undergo a pixel value reduction. The 

threshold value of each RONI is calculated and each bit is processed with respect to the 

threshold value. Finally the information is embedded in this modified carrier image using LSB 

steganography. The de stego process can retrieve the patient information as well as the sensitive 

information of the carrier image. In this method it is observes that the PSNR depends 

significantly upon the bits per pixel(bpp). Normally the same image. For an X-ray image PSNR 

value descends from 87 to 60 when bpp is increased gradually from 1 to 4. 

 



14 
 

Mantos and Maglogiannis [4] suggests a novel method for reversible steganography on medical 

images. The authors have used the concept of region of interest and Region of Non-Interest to 

make the embedding process reversible in nature. At the beginning, some of the rows from the 

top and bottom of the medical image are selected as RONI. It is assumed that these regions 

contain no sensitive data and hence tampering will be least detrimental. The size of the RONI 

is determined based on the data to be inserted in that region. This data comprises of start row 

of the ROI, size of the map which is the total number of bits altered in ROI during the 

embedding and the map itself which is a mapping of the altered pixels in ROI. In ROI, the data 

consisting of sensitive medical information, hash of the data (for authentication of embedded 

data), hash ROI (for authentication for ROI), is embedded. The three sets of data are encrypted 

to enhance security. This encrypted data and encryption key are embedded in the ROI. For 

embedding, the LSB matching technique is implemented. In the RONI, two bits are replaced, 

while ROI, single bits are replaced. The algorithm uses a Pseudo Random Sequence Generator 

to determine whether the bit in which is to be embedded in will undergo an increment or 

decrement operation. For the pixels values 0 or 255 cannot be decremented and incremented 

respectively. So a special sequence will be used in the map to represent such situation. In both 

the ROI and RONI, embedding is done by considering two halves. While in the RONI, the 

embedding is straightforward, in the ROI, the embedding occurs by considering the sobel 

operator of each halves. Although the robustness of this procedure is pretty low, the 

imperceptivity of the algorithm is pretty high. Once tested on 10 16-bit grayscale medical 

images (CTs and MRIs) of size 512 × 512 and 2 of size 256 × 256 maintaining an bpp of 0.25, 

the PSNR value ranges approximately between 105-107. 

 

Thiyagarajann and Aghila [5] suggests a novel method for reversible steganography on medical 

images. The authors have used the concept of region of interest and Region of Non-Interest to 

make the embedding process reversible in nature. At the beginning, the Region of Interest 

(ROI) and Region of Non-Interest (RONI) is separated using the Canny Edge Detector. 

Following this, the hash value of the ROI pixels is obtained. These hash values are useful for 

authenticating the integrity of the ROI post extraction of the embedded information. Also, from 

the hash values, a tree graph is generated. This tree graph is solved for 3-coloring problem to 

generate the key. The benefit of key generation through graph coloring procedure is that, it not 

only increases security of the embedding but also the key need not be transmitted as it can be 

generated during the extraction from the hash values. This key is also unique for each image, 

as it is obtained from the hash values. The embedding procedure is done in the RONI region. 
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The hash values are embedded sequentially following an arithmetic progression. The patient 

information however is embedded following the coloring sequence. While pixels 

corresponding to color 0 is not used for embedding, color 1 and color 2 are used for embedding. 

This procedure has an average PSNR value ranging between 68-74 dB. 

 

 

Chandrasekaran and Sevugan [6] proposed a novel method of reversible Data Hiding which is 

primarily focused on medical imagery, i.e., basically aiming at higher payload capacity, least 

distortion and complete reversibility. Authors for this have put forward idea of doing this in 

Hybrid Domain, i.e., using spatial as well as transform domain to hide the secret data and 

recover the original cover image. In the proposed method, authors have used a 2D DWT Haar 

transform for the secret data embedding, and the main part of this novel method which helps 

in reversibility is that the frequency changes that is being done during the embedding of the 

secret data in the transform domain, that information is preserved in the form of Auxiliary Data, 

and then this Auxiliary Data is hidden in the spatial Domain using the Histogram Modification 

Technique. The authors have used the work of Tai et el.[7], for the histogram Modification in 

spatial domain which uses pixel differences of neighboring pixels to construct the histogram 

and Binary tree structure to hold the multiple peak and zero points. Discrete Wavelet transform 

decomposes the image into four sub bands: LL,HL,LH and HH. LL is the approximate 

coefficient of the image. The host image is pre-processed and then the image is taken to 

transform domain using Haar integer to integer transform. In order to ensure better and near 

perfect reversibility of the cover image, the frequencies altered in the transform domain to 

embed the secret data is stored in the form of ‘Auxiliary data’ which will later be used. Now 

inverse haar transform is applied on the embedded image which is in the transform domain to 

bring it to spatial domain as the Intermediate Haar Transform Image(IHI). As the last phase of 

the embedding phase, the auxiliary data is embedded in the spatial domain using the histogram 

modification technique proposed by [7] to obtain the final stego image. In Extraction process, 

histogram recovery is implemented on the stego image to obtain the auxiliary data and then 

integer to integer haar transform is used to get the image in transform domain. Then the 

auxiliary data is used to retrieve the secret data and to tune the image to its original state. To 

retrieve the original image inverse integer to integer haar transform is Implemented to get 

recover the host image losslessly. . The proposed algo used tested using MATLAB and judged 

upon PSNR & SSIM (structural similarity Index). The data set comprised of multiple medical 

sample images like “Hepatitis marked Margo interior images” “Brain marked image” & 
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“Pelvic Cavity images” over various BPP. Comparative analysis of the proposed method with 

previous work(sachnev et al.[8], Wu et al.[9], Gao et al.[10]), showed that the image quality 

drops with increasing payload, and proposed method achieves better PSNR values compared 

to pre-exisiting methods. 

 

 

Ni et al. [11] proposed a novel method of reversible data hiding by using histogram 

modification technique which is primarily focused on least distortion as well as getting the 

cover image in a lossless way after data extraction. The novel algorithm proposes we first make 

a histogram of the given cover image and then scan the histogram for a set of one zero point 

and one peak point. The reason of using maximum point (histogram bin) is that to increase the 

embedding capacity because the number of bits that can be embedded equals the number of 

pixels in the maximum point/bin. The image is scanned in a sequential manner, and all the 

pixels that fall between maximum point+1 and zero point-1, are incremented by 1. Basically, 

the histogram is shifted one space to the right leaving the bin next to maximum value bin empty. 

Now, the image is again scanned in the same sequential manner and if a pixel is of the value 

corresponding to the maximum point is found then, the secret message is looked into bit by bit. 

If the secret message bit is ‘1’ then the pixel value is added with ‘1’, and if the secret message 

bit is ‘0’ then the pixel value is left unchanged. At the end of the process we get a new histogram 

in which the maximum point bin is diminished and now the empty bin is filled. Now for the 

data extraction as well as the original image recovery process is just the reverse of the 

embedding algorithm. At the end of the extraction process we will get a histogram with restored 

maximum point bin and an empty bin at maximum point+1 which was emptied while histogram 

bin shifting with 1 place. The image is scanned again and then all the pixel value between 

maximum point+1 and maximum point-1 are reduced by 1, so as to recover the original 

histogram and in turn get the original image in lossless manner. The algorithm states that the 

same procedure can also be executed with multiple pairs of peak and zero points by storing and 

passing the number of pairs in form of overhead information. 

 

Kim et al. [12] proposes a novel method of Reversible Data Hiding, which modifies the 

difference histogram between different sub-sampled images from the cover image. The method 

proposed exploits the spatial correlation inherent in neighbouring pixels in any image to get its 

desired minimal distortion after embedding information as well as to obtain the original 

unmarked cover image from the marked image after data extraction. The basic idea in this 

paper is to utilize the horizontal, vertical and diagonal neighbours of a pixel since they have 
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strongly spatial correlation and high pixel redundancy. Hence, multiple difference histograms 

are created. To start with, the host image is first sampled into multiple sub-sample images. Two 

sampling factors Δu and Δv, set the desired sub-sampling intervals in the row and column 

direction. The number of sub-sampled images generated after the process will be ( Δu x Δv ) 

and the size of each sub-sampled images is held at M/Δu and N/Δv if original image is at (M x 

N). After obtaining the different sub-sampled images, a reference sub-sampled image is SRef is 

determined to maximize the spatial correlation. SRef is selected as per a detailed algorithm 

mentioned in the paper itself. Now, Difference images are created between the SRef  and rest of 

the sub-sampled images. Now the authors have proposed to prepare Histograms for each of the 

difference image and then histogram shifting is done each of the histogram to prepare empty 

bins which will ultimately hold the Secret data that needs to be embedded. This shifting is done 

according to an embedding level L. Embedding level here means the number of times data will 

be hidden in a single shifted histogram. Histogram ranges between  -255 & 255, but the 

proposed method is mainly focused on the central part as most of the histogram will be 

concentrated in this region owing to the spatial correlation between the neighbouring pixels 

which is being exploited in this method. Now using the shifting mechanism specified as per 

the level the histogram bins are shifted to left as well as right and then message is embedded. 

Taking the message to be binary {0,1}. The modified difference image(after histogram 

shifting) is scanned and once a pixel value of -L or L is encountered, L being the level, then 

the message bit to be encoded is checked and if it is found to be 0 then no changes is done and 

if 1 is encountered then (L+1) is done and (-L-1) is done. The process is repeated till L>0. At 

L=0, only the +L is changed which ultimately leaves out (-1) bin empty. Finally the marked 

image is obtained through the inverse of the sub-sampling with unmodified reference sub-

sampled image and the modified destination sub-sampled images. Now in the resultant the -1 

bin of the histograms will remain empty and this is used to check whether the marked image is 

tampered with or not. The presented method requires transmitting some overhead information 

,i.e., ( Δu, Δv, and L) which is stored by simple LSB. While extracting the  -1 bin is checked 

and if it has more than one occurrence then the extraction process is stopped being the marked 

image is tampered with. Now the marked image is sub-sampled and the inverse of the 

embedding process is applied to extract the secret data as well as the cover image losslessly. 

 

Lee in his paper [13] is specifically focused on the reversible data hiding in medical images. 

The authors point it out that medical images are different from natural images and hence they 

have devised this algorithm with high quality and high capacity as well as 100% reversibility 

as goal. This paper proposes a novel method which uses a difference histogram expansion and 
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error-free scheme for medical images. The method is for multiple rounds of data embedding 

on the histogram so as to increase the data hiding capacity. If say, R round of data embedding 

is performed then the chances of overflowing and underflowing also increases. For eg.: if 7 

rounds of embedding is performed then the pixel whose values are 249 and above in 8 bit 

grayscale, they will become more than 255 and hence will arise a problem. So, the proposed 

method suggests first to resolve this problem of underflow and overflow. To, avoid this 

underflow and overflow possibility an error-free scheme is performed on the original image 

considering the number of iterations of data hiding to be R. R is subtracted from the pixel values 

which are more than (max pixel value-R) and when the pixel value are less than R then R is 

added to those pixel values. This modified information that which pixel values are changed is 

marked on a location map and this location map is embedded into the image using JBIG[14] 

compression. So, with this process, the proposed method has changed original image I into Ie 

(error-free image). Using this Ie an interpolated image is generated and from that the difference 

image is generated from the adjacent pixel values in turn is made. And from this difference 

image we get our difference histogram for data embedding. Then first iteration of embedding 

is done in the way normal histogram modification way of RDH, such as in [11]. Now this 

embedding process is repeated according to the specified number of repetitions R. And from 

using the absolute difference image the marked image is acquired. The data extraction step is 

completely reverse of the embedding step. After the restoration we get the error-free image, 

and from the error-free image we get our original image with 100% reversibility by using the 

value of R and the location map which we sent using JBIG compression. 

 

In the proposed paper[15], the authors have put forward a novel reversible data hiding algorithm 

which is supported on the pillars of histogram modification but the histogram is created using 

the idea of pixel differences instead of a normal histogram. The proposed algorithm exploits the 

strong correlation of neighbouring pixels in an image. That is, in some images it may be the case 

that the histogram produced may be an equal histogram or the maximum point won’t be high 

enough to embed large payload, which would make it unfavourable for data hiding. But by 

exploiting the strong correlation of neighbouring pixels, by using difference in the value of 

neighbouring pixels we will get a histogram which will have high maximum point and a 

favourable histogram for high payload embedding capacity. In the proposed algorithm the image 

is scanned in an inverse S-order, and pixel differences di is calculated using (xi-1- xi), and then 

histogram is prepared using this di, and then the normal histogram modification is done to embed 

data in reversible method. Now another problem with normal histogram modification technique 

is only one pair of maximum and zero point is used, resulting in relatively lower pure payload 



19 
 

capacity. The algorithm proposes that multiple hiding passes can be made on the histogram and 

by using multiple pairs of maximum and zero points higher payload can be embedded. But with 

this arises the problem of communicating the multiple pairs of maximum and zero points in order 

to ensure lossless recovery of the original image and the hidden data. The paper proposes the use 

of an auxiliary binary tree to communicate the multiple pairs of maximum and zero points. The 

paper[15] says, that every element in the auxiliary binary tree denotes a peak point. If we assume 

the number of peak points used to embed the secret message is 2L , then L is the level of the 

auxiliary binary tree. Now during the embedding process, another point that is needed to be taken 

care of is underflow and overflow, because modification on a pixel value will not be allowed if 

the pixel value is saturated, so the original pixel value histogram is shifted by 2L. In the 

embedding process first the underflow and overflow situation is countered by shifting the 

original histogram and then a neighbouring pixel value difference histogram is created by 

scanning the image in inverse-S order. After the difference histogram is obtained, it is shifted by 

2L to create empty bins for data embedding. The only overhead information that is required to 

be passed is the level of the auxiliary binary tree for lossless data extraction. The proposed 

algorithm was tested multiple grayscale images and it was observed that while keeping L=0, the 

PSNR value was maintained at 48.3 dB and the bpp value was ranging between 0.1734 to 0.0375 

on the data set. And as the level L was increased the number of bits of pure payload hidden went 

up to 250 kb but PSNR value came down to 26.62, but while maintaining the pure payload at 

around 33kb to 45kb the PSNR was around good 48.3 dB. 
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CHAPTER 3: PROPOSED METHOD 

This section presents a reversible data hiding methodology based on hybrid domain. It takes 

motivation from the reversible data hiding scheme presented in the paper of Kim et. Al. [10] 

and Lee et. Al. [13] but exceeds the former both in terms of embedding size and visual quality. 

After sub sampling, embedding and extraction schemes are explained. The embedding scheme 

involves performing 13-7 Integer Wavelet Transform on all the sub sampled images and the 

sensitive information is hidden in the high frequency bands. The reverse process is applied to 

extract the sensitive information from the cover image.  

3.1) Embedding Scheme 

Step1: Sub –Sampling is the process of dividing an image in a collection of its smaller units. 

Here we have used the sampling method used by Kim and Lee. Let I(x, y) be an image of 

dimension NxM where x=0,1......M-1 and y=0, 1…..N-1. We further define Δu and Δv as the 

two sampling factors along the rows and columns. This process creates sub sampled images S 

with dimension N/ Δu x M/ Δv. The methodology for calculating sub-sampled images are as 

follows: 

𝑆(𝑖, 𝑗) = 𝐼 𝑖. Δ𝑣  + 𝑓𝑙𝑜𝑜𝑟
𝑘 − 1

Δ𝑢
,  𝑗 · Δ𝑢 + (𝑘 − 1)𝑚𝑜𝑑Δ𝑢  

      Here i=0......, M/ Δv −1, j=0, ..., N/ Δu −1, and k=1..., Δu × Δv.    If N/ Δu and M/ Δv turn 

out to be a non-integral value, we modify the size of sub-sampled images by flooring. 

 

Fig. 7 
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Step2: We select one sub-sampled image in which no embedding will occur. This will increase 

the security of the cover image against various attacks. The index of the sub-sampled image S 

is calculated by the following equation. 

 

𝐼𝑛 = 𝑅𝑜𝑢𝑛𝑑 − 1 𝑥Δ𝑣  +  𝑅𝑜𝑢𝑛𝑑 . 

 

Step 3: All the subsampled images except the one with index In undergo one dimensional 13-

7 Integer Wavelet Transform.  The 13-7 Transform decomposed each image into four sub bands 

LL, LH, HL, HH. In our proposed algorithm, embedding occurs in the HH sub band.  

      The one dimensional 13-7 transform is used to transform a one-dimensional signal X 

consisting of 2K elements into an average A and detailed D sub-band. The following equations 

are used 

    𝐷[𝑛] = 𝑋[2𝑛 + 1] + 𝑓𝑙𝑜𝑜𝑟
 

(𝑋[2(𝑛 + 2)] + 𝑋[2(𝑛 − 1)]) − 9(𝑋[2𝑛 + 2] + 𝑥[2𝑛]) +  

𝐴[𝑛] = 𝑋[2𝑛] + 𝑓𝑙𝑜𝑜𝑟
1

32 
(−𝐷[𝑛 + 1] − 𝐷[𝑛 − 2]) + 9(𝐷[𝑛] + 𝐷[𝑛 − 2]) +

1

2
 

 

     Here X[2n] and X[2n+1] represents the even and odd signals respectively where 

n=0,1.......(k-1). To transform a 2D image of size NxM, the set of equations are applied twice, 

first along the rows and then along the columns.  

 

Step4: After embedding, we apply Inverse 13-7 Transform to generate the modified sub-
sampled images.  

            To reconstruct the original signal form Detailed D and Average component A, the 
following equations are used 

 

𝑋[2𝑛] = 𝐴[𝑛] − 𝑓𝑙𝑜𝑜𝑟
1

32 
(−𝐷[𝑛 + 1] − 𝐷[𝑛 − 2]) + 9(𝐷[𝑛] + 𝐷[𝑛 − 2]) +

1

2
 

𝑋[2𝑛 + 1] = 𝐷[2𝑛 + 1] − 𝑓𝑙𝑜𝑜𝑟  
1

16
  (𝑋[2(𝑛 + 2)] + 𝑋[2(𝑛 − 1)]) − 9(𝑋[2𝑛 + 2] + 𝑥[2𝑛]) +

1

2
 

 

Where n=0,1.......(k-1) to reconstruct the original signal X of length 2K.  For implementing this 

on an 2D image, we need to consider LL, LH, HL, HH as four quadrants of an NxM image. 
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Then applying the set on equations on all columns and on rows respectively to regenerate the 

2D image. 

Step5: Finally obtain the marked image, with inverse sub-sampling on the unmodified sub-

sampled image S(In) and the rest of the modified sub-sampled images 

 

This method also requires transmitting some overhead information such as the sampling factors 

and size of the data.   

 

 

 3.2) Extraction Scheme 

Step1: Obtain the values of two sampling factors Δu and Δv and perform sub-sampling on 
the marked image.  

Step 2: Determine the index of the unmodified sub-sample In. 

Step3: Apply 13-7 Integer Wavelet Transform on the modified sub-sampled images to 
generate the LL, LH, HL, HH sub bands. From the HH sub bands extract the sensitive 
information. 

Step4:  Apply 13-7 Inverse Integer wavelet transform to regenerate the sub-sample images. 

Step5: Finally use inverse sampling to regenerate the cover image.  

The image obtained at the end of the extraction scheme has no distortion. 
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Fig. 8 
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CHAPTER 4: EXPERIMENTAL RESULTS AND COMPARISSION 

Our algorithm’s performance was measured in terms of embedding capacity (BPP) and 
distortion (PSNR). The results thus obtained were compared to other pre-existing methods of 
image steganography some of which has been discussed in chapter 2 of this project report. We 
have used three images from USP-SIPI data set and two from pseudo-PHI-DICOM-Data. The 
bit string that is embedded is taken from the publicly available MRI reports which we have 
taken from the website of usarad.com which is written in the annexure iii(page no. 34) of this 
project. To increase the size of input bit string we have copied the stated bit string of 
annexure(iii) in order to increase our bit string size and the BPP value. 
 
4.1) Performance comparison with other algorithms: 

Table 1 summarizes the results based on the comparison between the proposed algorithm of 
this project and other reversible medical image steganography based algorithms. Here we have 
used two medical images of size 256x256 and size 225x225 and have taken a bpp of 0.51 and 
0.64 where we have achieved PSNR of 66.37 dB and 71.42 dB respectively. This shows that 
the proposed algorithm is producing better results than previously discussed algorithms of 
RDH in spatial domain. 

 

(a) (b)  

(c) (d)  
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(e ) (f)  
(a)(b)  (a) aerial           (b) comparison of payload(bpp) vs PSNR aerial data 

            (c)(d)  (c) cameraman (d) comparison of payload(bpp) vs PSNR on cameraman 
 (e)(f)   (e) jetplane       (f) comparison of payload(bpp) vs PSNR on jetplane 

Fig. 9 
The sampling factors for Fig 9. (a) (c) (e), were set to 16 

 
Keeping the value of sampling factor constant at 8, we calculate PSNR, SSIM, MSE for 8 
images from the USP-SIPI dataset 
 
 

Table 1: Result on USP-SIPI Dataset using 1 bit LSB in proposed algorithm 

Image MSE PSNR SSIM 

Jetplane 0.05801 60.946 0.9991 

Aerial 0.05818 60.48 0.9995 

Cameraman 0.05783 60.508 0.9991 

Lake 0.05807 60.490 0.9996 

House 0.05577 60.666 0.9994 

Pirate 0.05736 60.5445 0.9996 

Livingroom 0.05897 60.489 0.9992 

Walkbridge 0.05429 60.5497 0.9993 

 

The cover image and marked images for the above given data is given on the next page: 
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(a) (b)  

(c) (d)  

(e) (f)  
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(g) (h)  

(i) (j)  

Fig. 10: showing the cover images in (a),(c),(e),(g),(i) and their respective marked images in right column 

(a),(b): cover and marked image of Aerial 
(c),(d): cover and marked image of Cameraman 

(e),(f):cover and marked image of house 
(g),(h): cover and marked image of Lake 

(i),(j): cover and marked image of walkbridge 
 
Results on medical images: the first two rows’ cover and marked images are shown in fig. 8 

Now we test our algorithm on some of medical images. We have embedded some MRI reports 

in those images taken from [26]. 
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(a) (b)   

(c) (d)  

(e) (f)          
Fig. 11 (a)marked brain image of 256x256 (b) marked spine image of 225x225 

(c)cover brain image of 256x256 (d) cover spine image of 225x225 
(e )Cover 512x512 cervic spine (f) Marked 512x512 cervic spine 

Table 2: Results on Medical Images embedding MRI reports taken from [26] 

Image Size Bit String 
Size 

BPP MSE PSNR SSIM 

MRI Lumber Spine 225 x 225 33210 0.656 0.004 71.26 0.995 

MRI Brain 256 x 256 41943 0.506 0.007 69.25 0.998 

MRI Cervic SPine 512 x 512 146800 0.559 0.053 60.821 0.917 
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Table 3: Comparison of the proposed method with other RDH algorithms’ performance 
Sl

. N
o 

Article Techniques 

E
n

cr
yp

ti
on

 

D
om

ai
n

 

Auxiliary 
information 

Dataset PSNR(dB) Security Analysis 

1 Parah 
S.A. et 
al.[5] 

Interpolation of 
pixels, 
ISBS 
embedding 

N
on

-l
in

ea
r 

ch
ao

s 

Sp
at

ia
l 

Watermark & 
block 
checksum for 
authentication 

Chest X-ray, 
Angiograph 
y etc. 

46.36 with 
0.75 bpb 
payload 

salt & peeper noise, 
Gaussian noise, jpeg 
compression, median, 
low pass, Weiner 
filtering, sharpening 

2 Patel et al. 
[6] 

Cloud based, 
ROI and RONI 
division & LSB 
substitution N

A
 

Sp
at

ia
l 

Key value of 
four RONI 

Shenzhen 
Chest X-ray 
database 
4096x4096 
X ray image 
Tuberculosis 

87.8,78.79 , 
69.34 & 
60.21 for 
1,2,3 & 4 
bpb 12kB 
payload 

NA 

3 Mantos 
P.L et al 
[24] 

ROI & RONI 
division & 
LSB 
substitution H

as
h 

&
 

pu
bl

ic
 

ke
y 

Sp
at

ia
l 

Hash of ROI 
& EPR 

16 bit 
grayscale 
DICOM 

105 to 107 
for 0.25 bpb 
payload 

weighted stego & 
triples steganalysis 

4 Thiyaga 
rajanP. et 
al.[25] 

ROI & RONI 
using Canny 
edge detection 
& Arithmetic 
progression 

M
D

5 
ha

sh
 

of
 R

O
I 

Sp
at

ia
l 

Tree graph of 
hash with 3- 
coloring 

DICOM 
images 

68 to 74 for 
payload of 
650 to 1850 
bits 

cropping, rotation 
,scaling 

5 Chandra 
sekaran 
V. et 
al.[10] 

Integer wavelet 
transform(Haar 
& DIH shifting N

A
 

H
yb

ri
d 

Location map 
& binary tree 
for peak and 
zero point 

MATLAB 
R2010 
images 

62.56,52.85 
,50.92 & 
45.85at 
0.1,0.3,0.6 
& 0.8 bpb 

NA 

6 Ni Z. et 
al.[12] 

Histogram 
shifting 

N
A

 

Sp
at

ia
l 

peak and zero 
points 

512x512 
DOCOM 
images & 
1096 image 
CorelDraw 

48.2 and 
48.3 for 
payload of 
37682 to 
184442 bits 

NA 

7 Kim 
K.S. et 
al.[13] 

Multilevel DIH 
shifting of sub 
sampled images N

A
 

Sp
at

ia
l 

Overflow, 
underflow 
handling 
information 

512x512 
USC SIPI & 
DICOM 
image 

50dB to 
30.27 with 
payload 6Kb 
to 210Kb 

NA 

8 Lee H et al. 
[14] 

Multi round 
DIH shifting N

A
 

Sp
at

ia
l Location map MRI, CT- 

scans, X-ray 
image 

54 NA 

9 Tai 
W.L. et 
al.[15] 

DIH shifting & 
Overflow & 
underflow 
adjustment 

N
A

 

Sp
at

ia
l Binary tree of 

multiple peak 
and zero 
points 

512x512 
grayscale 
image 

Around 48.3 
with payload 
33kb to 
45kb 

NA  

10. Proposed 
algorithm 

Sub-Sampling 
of image & 13-
7 Integer 
wavelet 
transform 

N
A

 

T
ra

n
sf

or
m

 Sub-sampling 
parameters 
and size of the 
load 

256x256 
grayscale 
image 

66.37 dB & 
71.42 dB at 
0.51 bpp & 
0.64 bpp  

NA 
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Conclusion: 
Reversible medical image steganography is an important field of study as can be found in this 

literature.  This work began with a review of various algorithms used for embedding and 

extraction of data. The use of Integer Wavelet Transform leads to a faster computation. The high 

level of performance of the algorithm is evident from the high PSNR, small value of MSE and 

high SSIM. Hence the practicality of the algorithm is well conclusive. Future prospects for this 

algorithm involve using other wavelet transforms, or some spatial technique such as histogram 

shifting etc..  
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Annexure i 

List of Figures: 
Fig. 1: Message embedding and stego image preparation flowchart.  

Fig. 2: Message extraction from stego image flowchart.  

Fig. 3: Reversible Data Hiding flowchart 

Fig. 4: Message embedding in transform domain flowchart 

Fig. 5: Message extraction in transform domain flowchart 

Fig. 6: Spatial Image’s transformation into the four bands of LL,LH,HL,HH. 

Fig. 7: Representation of sub-sampling of image into multiple sub-samples taking Δu= Δv= 4. 

Fig. 8: Proposed Algorithm’s flowchart 

Fig. 9:  (a) ‘Aerial’ marked image 

  (b) comparison of payload(bpp) vs PSNR on data generated by embedding on Aerial Image 

  (c) ‘Cameraman’ marked image 

  (d) comparison of payload(bpp) vs PSNR on data generated by embedding on Cameraman Image 

  (e) ‘Jetplane’ marked image 

  (f) comparison of payload(bpp) vs PSNR on data generated by embedding on jetplane Image 

 Fig. 10: (a),(b): cover and marked image of Aerial 

(c),(d): cover and marked image of Cameraman 

(e),(f):cover and marked image of house 

(g),(h): cover and marked image of Lake 

(i),(j): cover and marked image of walkbridge 

 

Fig. 11: (a) cover brain image of 256x256  

(b) marked brain image of 256x256 

(c) cover spine image of 225x225 

(d) marked spine image of 225x225 

(e)Cover 512x512 cervic spine  

(f) Marked 512x512 cervic spine 
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Annexure ii 

List of Tables: 
Table 1: Result on USP-SIPI Dataset 

Table 2: Results on Medical Images embedding MRI reports taken from [26] 

   Table 3: Comparison of the proposed method with other RDH algorithms’ performance 
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Annexure iii 

MRI report 

(The following MRI report has been taken from [26]) 
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MRI OF THE LUMBAR SPINE WITH AND WITHOUT CONTRAST 

PROCEDURE: 

MRI of lumbosacral spine without/with IV contrast. 

 

INDICATION: 

Radiculopathy post L2-L3 fusion, question incomplete fusion. Persistent symptoms. 

 

COMPARISON: 

None. 

 

TECHNIQUE: 

Multiplanar and multi-sequence imaging of the lumbosacral spine without/with intravenous contrast 
using a 0.3T MRI scanner. 

 

FINDINGS: 

Postoperative findings of posterior intrapedicular spinal fusion at L2-L3 noted. The L2-L3 disk is 
preserved. Enhancing peridural fibrosis noted at L2-L3 level mildly deforming the thecal sac with 
dominant extrinsic impression on the right lateral thecal sac. Non enhancing cystic foci noted along 
the posterior elements representing small pseudomeningoceles. Postoperative fusion and 
laminectomy noted at L4-L5 level with osseous fusion anteriorly. Osseous hypertrophy of the 
posterior elements noted at L4 and L5. Lumbar lordosis is decreased. Multilevel endplate, disk and 
facet degenerative changes noted. Conus medullaris terminates at approximately mid L1 vertebral 
body level. 

 

L1-L2 shows moderate broad-based disc bulging contributing to mild to moderate left greater than 
right neuroforamina narrowing. Spinal canal is grossly patent. Approximately 2 mm L1 on L2 
retrolisthesis noted. 

 

L2-L3 shows moderate nonenhancing bi foraminal broad-based disk bulging contributing to mild-to- 
moderate right greater than left neural foramina narrowing. Moderate acquired spinal canal stenosis 
noted due to enhancing peridural fibrosis with asymmetric more focal extrinsic impression on the 
right lateral ventral thecal sac. Negligible spondylolisthesis of L2 on L3 noted. 

 

L3-L4 level shows mild disk desiccation and height loss. Extraforaminal focal annular tears noted on 
both sides. Spinal canal and foramina are patent. 
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L4-L5 level shows postoperative findings with partial fusion anteriorly with linear hyper intense 
signal in the remaining intervertebral disk space. Spinal canal and foramina are patent. No gross 
thecal sac deformity noted. Bilateral laminectomies noted. 

 

L5-S1 level shows subtle left central broad-based disk protrusion. Spinal canal and foramina are 
patent. No gross thecal sac deformity. Bilateral laminectomies noted. 

Ferromagnetic susceptibility artifact noted along the mid posterior back spanning from L2 through 
S2. 

 

No suspicious prevertebral or posterior paraspinal soft tissue signal abnormality noted. Mild 
subchondral sclerosis of the included sacroiliac joints noted. 

Incidental note of overdistended bladder. 

 

IMPRESSION: 

1. Postoperative findings of posterior spinal intrapedicular fusion at L2-L3 level. L2-L3 shows 
moderate nonenhancing bi foraminal broad-based disk bulging contributing to mild-to-moderate 
right greater than left neural foramina narrowing. Moderate acquired spinal canal stenosis noted 
due to enhancing peridural fibrosis with asymmetric more focal extrinsic impression on the right 
lateral ventral thecal sac. Negligible spondylolisthesis of L2 on L3 noted. Non enhancing cystic foci 
noted along the posterior elements representing small pseudomeningoceles. 

 

2. Postoperative fusion and laminectomy noted at L4-L5 levels with osseous fusion anteriorly. 
Osseous hypertrophy of the posterior elements noted at L4 and L5. 

 

3. L5-S1 level shows subtle left central broad-based disk protrusion. Spinal canal and foramina 
are patent. No gross thecal sac deformity. 

 

Note that the stability of findings cannot be determined in the absence of prior imaging for 
comparison/correlation. 

Correlation with prior imaging is advised to document stability of findings described. 

 

-Electronically Signed by: RADIOLOGIST, ADMIN on 06/07/2010 1:22:01 PM 

 

Bit string: 

00001010 00100000 00001010 01001101 01010010 01001001 00100000 01001111 01000110 
00100000 01010100 01001000 01000101 00100000 01001100 01010101 01001101 01000010 
01000001 01010010 00100000 01010011 01010000 01001001 01001110 01000101 00100000 
01010111 01001001 01010100 01001000 00100000 01000001 01001110 01000100 00100000 
01010111 01001001 01010100 01001000 01001111 01010101 01010100 00100000 01000011 
01001111 01001110 01010100 01010010 01000001 01010011 01010100 00001010 01010000 
01010010 01001111 01000011 01000101 01000100 01010101 01010010 01000101 00111010 
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00001010 01001101 01010010 01001001 00100000 01101111 01100110 00100000 01101100 
01110101 01101101 01100010 01101111 01110011 01100001 01100011 01110010 01100001 
01101100 00100000 01110011 01110000 01101001 01101110 01100101 00100000 01110111 
01101001 01110100 01101000 01101111 01110101 01110100 00101111 01110111 01101001 
01110100 01101000 00100000 01001001 01010110 00100000 01100011 01101111 01101110 
01110100 01110010 01100001 01110011 01110100 00101110 00001010 00001010 01001001 
01001110 01000100 01001001 01000011 01000001 01010100 01001001 01001111 01001110 
00111010 00001010 01010010 01100001 01100100 01101001 01100011 01110101 01101100 
01101111 01110000 01100001 01110100 01101000 01111001 00100000 01110000 01101111 
01110011 01110100 00100000 01001100 00110010 00101101 01001100 00110011 00100000 
01100110 01110101 01110011 01101001 01101111 01101110 00101100 00100000 01110001 
01110101 01100101 01110011 01110100 01101001 01101111 01101110 00100000 01101001 
01101110 01100011 01101111 01101101 01110000 01101100 01100101 01110100 01100101 
00100000 01100110 01110101 01110011 01101001 01101111 01101110 00101110 00100000 
01010000 01100101 01110010 01110011 01101001 01110011 01110100 01100101 01101110 
01110100 00100000 01110011 01111001 01101101 01110000 01110100 01101111 01101101 
01110011 00101110 00001010 00001010 01000011 01001111 01001101 01010000 01000001 
01010010 01001001 01010011 01001111 01001110 00111010 00001010 01001110 01101111 
01101110 01100101 00101110 00001010 00001010 01010100 01000101 01000011 01001000 
01001110 01001001 01010001 01010101 01000101 00111010 00001010 01001101 01110101 
01101100 01110100 01101001 01110000 01101100 01100001 01101110 01100001 01110010 
00100000 01100001 01101110 01100100 00100000 01101101 01110101 01101100 01110100 
01101001 00101101 01110011 01100101 01110001 01110101 01100101 01101110 01100011 
01100101 00100000 01101001 01101101 01100001 01100111 01101001 01101110 01100111 
00100000 01101111 01100110 00100000 01110100 01101000 01100101 00100000 01101100 
01110101 01101101 01100010 01101111 01110011 01100001 01100011 01110010 01100001 
01101100 00100000 01110011 01110000 01101001 01101110 01100101 00100000 01110111 
01101001 01110100 01101000 01101111 01110101 01110100 00101111 01110111 01101001 
01110100 01101000 00100000 01101001 01101110 01110100 01110010 01100001 01110110 
01100101 01101110 01101111 01110101 01110011 00100000 01100011 01101111 01101110 
01110100 01110010 01100001 01110011 01110100 00100000 01110101 01110011 01101001 
01101110 01100111 00100000 01100001 00100000 00110000 00101110 00110011 01010100 
00100000 01001101 01010010 01001001 00100000 01110011 01100011 01100001 01101110 
01101110 01100101 01110010 00101110 00001010 00001010 01000110 01001001 01001110 
01000100 01001001 01001110 01000111 01010011 00111010 00001010 01010000 01101111 
01110011 01110100 01101111 01110000 01100101 01110010 01100001 01110100 01101001 
01110110 01100101 00100000 01100110 01101001 01101110 01100100 01101001 01101110 
01100111 01110011 00100000 01101111 01100110 00100000 01110000 01101111 01110011 
01110100 01100101 01110010 01101001 01101111 01110010 00100000 01101001 01101110 
01110100 01110010 01100001 01110000 01100101 01100100 01101001 01100011 01110101 
01101100 01100001 01110010 00100000 01110011 01110000 01101001 01101110 01100001 
01101100 00100000 01100110 01110101 01110011 01101001 01101111 01101110 00100000 
01100001 01110100 00100000 01001100 00110010 00101101 01001100 00110011 00100000 
01101110 01101111 01110100 01100101 01100100 00101110 00100000 01010100 01101000 
01100101 00100000 01001100 00110010 00101101 01001100 00110011 00100000 01100100 
01101001 01110011 01101011 00100000 01101001 01110011 00100000 01110000 01110010 
01100101 01110011 01100101 01110010 01110110 01100101 01100100 00101110 00100000 
01000101 01101110 01101000 01100001 01101110 01100011 01101001 01101110 01100111 
00100000 01110000 01100101 01110010 01101001 01100100 01110101 01110010 01100001 
01101100 00100000 01100110 01101001 01100010 01110010 01101111 01110011 01101001 
01110011 00100000 01101110 01101111 01110100 01100101 01100100 00100000 01100001 
01110100 00100000 01001100 00110010 00101101 01001100 00110011 00100000 01101100 
01100101 01110110 01100101 01101100 00100000 01101101 01101001 01101100 01100100 



40 
 

01101100 01111001 00100000 01100100 01100101 01100110 01101111 01110010 01101101 
01101001 01101110 01100111 00100000 01110100 01101000 01100101 00100000 01110100 
01101000 01100101 01100011 01100001 01101100 00100000 01110011 01100001 01100011 
00100000 01110111 01101001 01110100 01101000 00100000 01100100 01101111 01101101 
01101001 01101110 01100001 01101110 01110100 00100000 01100101 01111000 01110100 
01110010 01101001 01101110 01110011 01101001 01100011 00100000 01101001 01101101 
01110000 01110010 01100101 01110011 01110011 01101001 01101111 01101110 00100000 
01101111 01101110 00100000 01110100 01101000 01100101 00100000 01110010 01101001 
01100111 01101000 01110100 00100000 01101100 01100001 01110100 01100101 01110010 
01100001 01101100 00100000 01110100 01101000 01100101 01100011 01100001 01101100 
00100000 01110011 01100001 01100011 00101110 00100000 01001110 01101111 01101110 
00100000 01100101 01101110 01101000 01100001 01101110 01100011 01101001 01101110 
01100111 00100000 01100011 01111001 01110011 01110100 01101001 01100011 00100000 
01100110 01101111 01100011 01101001 00100000 01101110 01101111 01110100 01100101 
01100100 00100000 01100001 01101100 01101111 01101110 01100111 00100000 01110100 
01101000 01100101 00100000 01110000 01101111 01110011 01110100 01100101 01110010 
01101001 01101111 01110010 00100000 01100101 01101100 01100101 01101101 01100101 
01101110 01110100 01110011 00100000 01110010 01100101 01110000 01110010 01100101 
01110011 01100101 01101110 01110100 01101001 01101110 01100111 00100000 01110011 
01101101 01100001 01101100 01101100 00100000 01110000 01110011 01100101 01110101 
01100100 01101111 01101101 01100101 01101110 01101001 01101110 01100111 01101111 
01100011 01100101 01101100 01100101 01110011 00101110 00100000 01010000 01101111 
01110011 01110100 01101111 01110000 01100101 01110010 01100001 01110100 01101001 
01110110 01100101 00100000 01100110 01110101 01110011 01101001 01101111 01101110 
00100000 01100001 01101110 01100100 00100000 01101100 01100001 01101101 01101001 
01101110 01100101 01100011 01110100 01101111 01101101 01111001 00100000 01101110 
01101111 01110100 01100101 01100100 00100000 01100001 01110100 00100000 01001100 
00110100 00101101 01001100 00110101 00100000 01101100 01100101 01110110 01100101 
01101100 00100000 01110111 01101001 01110100 01101000 00100000 01101111 01110011 
01110011 01100101 01101111 01110101 01110011 00100000 01100110 01110101 01110011 
01101001 01101111 01101110 00100000 01100001 01101110 01110100 01100101 01110010 
01101001 01101111 01110010 01101100 01111001 00101110 00100000 01001111 01110011 
01110011 01100101 01101111 01110101 01110011 00100000 01101000 01111001 01110000 
01100101 01110010 01110100 01110010 01101111 01110000 01101000 01111001 00100000 
01101111 01100110 00100000 01110100 01101000 01100101 00100000 01110000 01101111 
01110011 01110100 01100101 01110010 01101001 01101111 01110010 00100000 01100101 
01101100 01100101 01101101 01100101 01101110 01110100 01110011 00100000 01101110 
01101111 01110100 01100101 01100100 00100000 01100001 01110100 00100000 01001100 
00110100 00100000 01100001 01101110 01100100 00100000 01001100 00110101 00101110 
00100000 01001100 01110101 01101101 01100010 01100001 01110010 00100000 01101100 
01101111 01110010 01100100 01101111 01110011 01101001 01110011 00100000 01101001 
01110011 00100000 01100100 01100101 01100011 01110010 01100101 01100001 01110011 
01100101 01100100 00101110 00100000 01001101 01110101 01101100 01110100 01101001 
01101100 01100101 01110110 01100101 01101100 00100000 01100101 01101110 01100100 
01110000 01101100 01100001 01110100 01100101 00101100 00100000 01100100 01101001 
01110011 01101011 00100000 01100001 01101110 01100100 00100000 01100110 01100001 
01100011 01100101 01110100 00100000 01100100 01100101 01100111 01100101 01101110 
01100101 01110010 01100001 01110100 01101001 01110110 01100101 00100000 01100011 
01101000 01100001 01101110 01100111 01100101 01110011 00100000 01101110 01101111 
01110100 01100101 01100100 00101110 00100000 01000011 01101111 01101110 01110101 
01110011 00100000 01101101 01100101 01100100 01110101 01101100 01101100 01100001 
01110010 01101001 01110011 00100000 01110100 01100101 01110010 01101101 01101001 
01101110 01100001 01110100 01100101 01110011 00100000 01100001 01110100 00100000 
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01100001 01110000 01110000 01110010 01101111 01111000 01101001 01101101 01100001 
01110100 01100101 01101100 01111001 00100000 01101101 01101001 01100100 00100000 
01001100 00110001 00100000 01110110 01100101 01110010 01110100 01100101 01100010 
01110010 01100001 01101100 00100000 01100010 01101111 01100100 01111001 00100000 
01101100 01100101 01110110 01100101 01101100 00101110 00001010 00001010 01001100 
00110001 00101101 01001100 00110010 00100000 01110011 01101000 01101111 01110111 
01110011 00100000 01101101 01101111 01100100 01100101 01110010 01100001 01110100 
01100101 00100000 01100010 01110010 01101111 01100001 01100100 00101101 01100010 
01100001 01110011 01100101 01100100 00100000 01100100 01101001 01110011 01100011 
00100000 01100010 01110101 01101100 01100111 01101001 01101110 01100111 00100000 
01100011 01101111 01101110 01110100 01110010 01101001 01100010 01110101 01110100 
01101001 01101110 01100111 00100000 01110100 01101111 00100000 01101101 01101001 
01101100 01100100 00100000 01110100 01101111 00100000 01101101 01101111 01100100 
01100101 01110010 01100001 01110100 01100101 00100000 01101100 01100101 01100110 
01110100 00100000 01100111 01110010 01100101 01100001 01110100 01100101 01110010 
00100000 01110100 01101000 01100001 01101110 00100000 01110010 01101001 01100111 
01101000 01110100 00100000 01101110 01100101 01110101 01110010 01101111 01100110 
01101111 01110010 01100001 01101101 01101001 01101110 01100001 00100000 01101110 
01100001 01110010 01110010 01101111 01110111 01101001 01101110 01100111 00101110 
00100000 01010011 01110000 01101001 01101110 01100001 01101100 00100000 01100011 
01100001 01101110 01100001 01101100 00100000 01101001 01110011 00100000 01100111 
01110010 01101111 01110011 01110011 01101100 01111001 00100000 01110000 01100001 
01110100 01100101 01101110 01110100 00101110 00100000 01000001 01110000 01110000 
01110010 01101111 01111000 01101001 01101101 01100001 01110100 01100101 01101100 
01111001 00100000 00110010 00100000 01101101 01101101 00100000 01001100 00110001 
00100000 01101111 01101110 00100000 01001100 00110010 00100000 01110010 01100101 
01110100 01110010 01101111 01101100 01101001 01110011 01110100 01101000 01100101 
01110011 01101001 01110011 00100000 01101110 01101111 01110100 01100101 01100100 
00101110 00001010 00001010 01001100 00110010 00101101 01001100 00110011 00100000 
01110011 01101000 01101111 01110111 01110011 00100000 01101101 01101111 01100100 
01100101 01110010 01100001 01110100 01100101 00100000 01101110 01101111 01101110 
01100101 01101110 01101000 01100001 01101110 01100011 01101001 01101110 01100111 
00100000 01100010 01101001 00100000 01100110 01101111 01110010 01100001 01101101 
01101001 01101110 01100001 01101100 00100000 01100010 01110010 01101111 01100001 
01100100 00101101 01100010 01100001 01110011 01100101 01100100 00100000 01100100 
01101001 01110011 01101011 00100000 01100010 01110101 01101100 01100111 01101001 
01101110 01100111 00100000 01100011 01101111 01101110 01110100 01110010 01101001 
01100010 01110101 01110100 01101001 01101110 01100111 00100000 01110100 01101111 
00100000 01101101 01101001 01101100 01100100 00101101 01110100 01101111 00101101 
00100000 01101101 01101111 01100100 01100101 01110010 01100001 01110100 01100101 
00100000 01110010 01101001 01100111 01101000 01110100 00100000 01100111 01110010 
01100101 01100001 01110100 01100101 01110010 00100000 01110100 01101000 01100001 
01101110 00100000 01101100 01100101 01100110 01110100 00100000 01101110 01100101 
01110101 01110010 01100001 01101100 00100000 01100110 01101111 01110010 01100001 
01101101 01101001 01101110 01100001 00100000 01101110 01100001 01110010 01110010 
01101111 01110111 01101001 01101110 01100111 00101110 00100000 01001101 01101111 
01100100 01100101 01110010 01100001 01110100 01100101 00100000 01100001 01100011 
01110001 01110101 01101001 01110010 01100101 01100100 00100000 01110011 01110000 
01101001 01101110 01100001 01101100 00100000 01100011 01100001 01101110 01100001 
01101100 00100000 01110011 01110100 01100101 01101110 01101111 01110011 01101001 
01110011 00100000 01101110 01101111 01110100 01100101 01100100 00100000 01100100 
01110101 01100101 00100000 01110100 01101111 00100000 01100101 01101110 01101000 
01100001 01101110 01100011 01101001 01101110 01100111 00100000 01110000 01100101 
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01110010 01101001 01100100 01110101 01110010 01100001 01101100 00100000 01100110 
01101001 01100010 01110010 01101111 01110011 01101001 01110011 00100000 01110111 
01101001 01110100 01101000 00100000 01100001 01110011 01111001 01101101 01101101 
01100101 01110100 01110010 01101001 01100011 00100000 01101101 01101111 01110010 
01100101 00100000 01100110 01101111 01100011 01100001 01101100 00100000 01100101 
01111000 01110100 01110010 01101001 01101110 01110011 01101001 01100011 00100000 
01101001 01101101 01110000 01110010 01100101 01110011 01110011 01101001 01101111 
01101110 00100000 01101111 01101110 00100000 01110100 01101000 01100101 00100000 
01110010 01101001 01100111 01101000 01110100 00100000 01101100 01100001 01110100 
01100101 01110010 01100001 01101100 00100000 01110110 01100101 01101110 01110100 
01110010 01100001 01101100 00100000 01110100 01101000 01100101 01100011 01100001 
01101100 00100000 01110011 01100001 01100011 00101110 00100000 01001110 01100101 
01100111 01101100 01101001 01100111 01101001 01100010 01101100 01100101 00100000 
01110011 01110000 01101111 01101110 01100100 01111001 01101100 01101111 01101100 
01101001 01110011 01110100 01101000 01100101 01110011 01101001 01110011 00100000 
01101111 01100110 00100000 01001100 00110010 00100000 01101111 01101110 00100000 
01001100 00110011 00100000 01101110 01101111 01110100 01100101 01100100 00101110 
00001010 00001010 01001100 00110011 00101101 01001100 00110100 00100000 01101100 
01100101 01110110 01100101 01101100 00100000 01110011 01101000 01101111 01110111 
01110011 00100000 01101101 01101001 01101100 01100100 00100000 01100100 01101001 
01110011 01101011 00100000 01100100 01100101 01110011 01101001 01100011 01100011 
01100001 01110100 01101001 01101111 01101110 00100000 01100001 01101110 01100100 
00100000 01101000 01100101 01101001 01100111 01101000 01110100 00100000 01101100 
01101111 01110011 01110011 00101110 00100000 01000101 01111000 01110100 01110010 
01100001 01100110 01101111 01110010 01100001 01101101 01101001 01101110 01100001 
01101100 00100000 01100110 01101111 01100011 01100001 01101100 00100000 01100001 
01101110 01101110 01110101 01101100 01100001 01110010 00100000 01110100 01100101 
01100001 01110010 01110011 00100000 01101110 01101111 01110100 01100101 01100100 
00100000 01101111 01101110 00100000 01100010 01101111 01110100 01101000 00100000 
01110011 01101001 01100100 01100101 01110011 00101110 00100000 01010011 01110000 
01101001 01101110 01100001 01101100 00100000 01100011 01100001 01101110 01100001 
01101100 00100000 01100001 01101110 01100100 00100000 01100110 01101111 01110010 
01100001 01101101 01101001 01101110 01100001 00100000 01100001 01110010 01100101 
00100000 01110000 01100001 01110100 01100101 01101110 01110100 00101110 00001010 
00100000 00001010 00001010 00100000 00001010 00001010 01001100 00110100 00101101 
01001100 00110101 00100000 01101100 01100101 01110110 01100101 01101100 00100000 
01110011 01101000 01101111 01110111 01110011 00100000 01110000 01101111 01110011 
01110100 01101111 01110000 01100101 01110010 01100001 01110100 01101001 01110110 
01100101 00100000 01100110 01101001 01101110 01100100 01101001 01101110 01100111 
01110011 00100000 01110111 01101001 01110100 01101000 00100000 01110000 01100001 
01110010 01110100 01101001 01100001 01101100 00100000 01100110 01110101 01110011 
01101001 01101111 01101110 00100000 01100001 01101110 01110100 01100101 01110010 
01101001 01101111 01110010 01101100 01111001 00100000 01110111 01101001 01110100 
01101000 00100000 01101100 01101001 01101110 01100101 01100001 01110010 00100000 
01101000 01111001 01110000 01100101 01110010 00100000 01101001 01101110 01110100 
01100101 01101110 01110011 01100101 00100000 01110011 01101001 01100111 01101110 
01100001 01101100 00100000 01101001 01101110 00100000 01110100 01101000 01100101 
00100000 01110010 01100101 01101101 01100001 01101001 01101110 01101001 01101110 
01100111 00100000 01101001 01101110 01110100 01100101 01110010 01110110 01100101 
01110010 01110100 01100101 01100010 01110010 01100001 01101100 00100000 01100100 
01101001 01110011 01101011 00100000 01110011 01110000 01100001 01100011 01100101 
00101110 00100000 01010011 01110000 01101001 01101110 01100001 01101100 00100000 
01100011 01100001 01101110 01100001 01101100 00100000 01100001 01101110 01100100 
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00100000 01100110 01101111 01110010 01100001 01101101 01101001 01101110 01100001 
00100000 01100001 01110010 01100101 00100000 01110000 01100001 01110100 01100101 
01101110 01110100 00101110 00100000 01001110 01101111 00100000 01100111 01110010 
01101111 01110011 01110011 00100000 01110100 01101000 01100101 01100011 01100001 
01101100 00100000 01110011 01100001 01100011 00100000 01100100 01100101 01100110 
01101111 01110010 01101101 01101001 01110100 01111001 00100000 01101110 01101111 
01110100 01100101 01100100 00101110 00100000 01000010 01101001 01101100 01100001 
01110100 01100101 01110010 01100001 01101100 00100000 01101100 01100001 01101101 
01101001 01101110 01100101 01100011 01110100 01101111 01101101 01101001 01100101 
01110011 00100000 01101110 01101111 01110100 01100101 01100100 00101110 00001010 
00001010 01001100 00110101 00101101 01010011 00110001 00100000 01101100 01100101 
01110110 01100101 01101100 00100000 01110011 01101000 01101111 01110111 01110011 
00100000 01110011 01110101 01100010 01110100 01101100 01100101 00100000 01101100 
01100101 01100110 01110100 00100000 01100011 01100101 01101110 01110100 01110010 
01100001 01101100 00100000 01100010 01110010 01101111 01100001 01100100 00101101 
01100010 01100001 01110011 01100101 01100100 00100000 01100100 01101001 01110011 
01101011 00100000 01110000 01110010 01101111 01110100 01110010 01110101 01110011 
01101001 01101111 01101110 00101110 00100000 01010011 01110000 01101001 01101110 
01100001 01101100 00100000 01100011 01100001 01101110 01100001 01101100 00100000 
01100001 01101110 01100100 00100000 01100110 01101111 01110010 01100001 01101101 
01101001 01101110 01100001 00100000 01100001 01110010 01100101 00100000 01110000 
01100001 01110100 01100101 01101110 01110100 00101110 00100000 01001110 01101111 
00100000 01100111 01110010 01101111 01110011 01110011 00100000 01110100 01101000 
01100101 01100011 01100001 01101100 00100000 01110011 01100001 01100011 00100000 
01100100 01100101 01100110 01101111 01110010 01101101 01101001 01110100 01111001 
00101110 00100000 01000010 01101001 01101100 01100001 01110100 01100101 01110010 
01100001 01101100 00100000 01101100 01100001 01101101 01101001 01101110 01100101 
01100011 01110100 01101111 01101101 01101001 01100101 01110011 00100000 01101110 
01101111 01110100 01100101 01100100 00101110 00001010 01000110 01100101 01110010 
01110010 01101111 01101101 01100001 01100111 01101110 01100101 01110100 01101001 
01100011 00100000 01110011 01110101 01110011 01100011 01100101 01110000 01110100 
01101001 01100010 01101001 01101100 01101001 01110100 01111001 00100000 01100001 
01110010 01110100 01101001 01100110 01100001 01100011 01110100 00100000 01101110 
01101111 01110100 01100101 01100100 00100000 01100001 01101100 01101111 01101110 
01100111 00100000 01110100 01101000 01100101 00100000 01101101 01101001 01100100 
00100000 01110000 01101111 01110011 01110100 01100101 01110010 01101001 01101111 
01110010 00100000 01100010 01100001 01100011 01101011 00100000 01110011 01110000 
01100001 01101110 01101110 01101001 01101110 01100111 00100000 01100110 01110010 
01101111 01101101 00100000 01001100 00110010 00100000 01110100 01101000 01110010 
01101111 01110101 01100111 01101000 00100000 01010011 00110010 00101110 00001010 
00001010 01001110 01101111 00100000 01110011 01110101 01110011 01110000 01101001 
01100011 01101001 01101111 01110101 01110011 00100000 01110000 01110010 01100101 
01110110 01100101 01110010 01110100 01100101 01100010 01110010 01100001 01101100 
00100000 01101111 01110010 00100000 01110000 01101111 01110011 01110100 01100101 
01110010 01101001 01101111 01110010 00100000 01110000 01100001 01110010 01100001 
01110011 01110000 01101001 01101110 01100001 01101100 00100000 01110011 01101111 
01100110 01110100 00100000 01110100 01101001 01110011 01110011 01110101 01100101 
00100000 01110011 01101001 01100111 01101110 01100001 01101100 00100000 01100001 
01100010 01101110 01101111 01110010 01101101 01100001 01101100 01101001 01110100 
01111001 00100000 01101110 01101111 01110100 01100101 01100100 00101110 00100000 
01001101 01101001 01101100 01100100 00100000 01110011 01110101 01100010 01100011 
01101000 01101111 01101110 01100100 01110010 01100001 01101100 00100000 01110011 
01100011 01101100 01100101 01110010 01101111 01110011 01101001 01110011 00100000 
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01101111 01100110 00100000 01110100 01101000 01100101 00100000 01101001 01101110 
01100011 01101100 01110101 01100100 01100101 01100100 00100000 01110011 01100001 
01100011 01110010 01101111 01101001 01101100 01101001 01100001 01100011 00100000 
01101010 01101111 01101001 01101110 01110100 01110011 00100000 01101110 01101111 
01110100 01100101 01100100 00101110 00001010 01001001 01101110 01100011 01101001 
01100100 01100101 01101110 01110100 01100001 01101100 00100000 01101110 01101111 
01110100 01100101 00100000 01101111 01100110 00100000 01101111 01110110 01100101 
01110010 01100100 01101001 01110011 01110100 01100101 01101110 01100100 01100101 
01100100 00100000 01100010 01101100 01100001 01100100 01100100 01100101 01110010 
00101110 00001010 00001010 01001001 01001101 01010000 01010010 01000101 01010011 
01010011 01001001 01001111 01001110 00111010 00001010 00110001 00101110 00001001 
01010000 01101111 01110011 01110100 01101111 01110000 01100101 01110010 01100001 
01110100 01101001 01110110 01100101 00100000 01100110 01101001 01101110 01100100 
01101001 01101110 01100111 01110011 00100000 01101111 01100110 00100000 01110000 
01101111 01110011 01110100 01100101 01110010 01101001 01101111 01110010 00100000 
01110011 01110000 01101001 01101110 01100001 01101100 00100000 01101001 01101110 
01110100 01110010 01100001 01110000 01100101 01100100 01101001 01100011 01110101 
01101100 01100001 01110010 00100000 01100110 01110101 01110011 01101001 01101111 
01101110 00100000 01100001 01110100 00100000 01001100 00110010 00101101 01001100 
00110011 00100000 01101100 01100101 01110110 01100101 01101100 00101110 00100000 
01001100 00110010 00101101 01001100 00110011 00100000 01110011 01101000 01101111 
01110111 01110011 00100000 01101101 01101111 01100100 01100101 01110010 01100001 
01110100 01100101 00100000 01101110 01101111 01101110 01100101 01101110 01101000 
01100001 01101110 01100011 01101001 01101110 01100111 00100000 01100010 01101001 
00100000 01100110 01101111 01110010 01100001 01101101 01101001 01101110 01100001 
01101100 00100000 01100010 01110010 01101111 01100001 01100100 00101101 01100010 
01100001 01110011 01100101 01100100 00100000 01100100 01101001 01110011 01101011 
00100000 01100010 01110101 01101100 01100111 01101001 01101110 01100111 00100000 
01100011 01101111 01101110 01110100 01110010 01101001 01100010 01110101 01110100 
01101001 01101110 01100111 00100000 01110100 01101111 00100000 01101101 01101001 
01101100 01100100 00101101 01110100 01101111 00101101 01101101 01101111 01100100 
01100101 01110010 01100001 01110100 01100101 00100000 01110010 01101001 01100111 
01101000 01110100 00100000 01100111 01110010 01100101 01100001 01110100 01100101 
01110010 00100000 01110100 01101000 01100001 01101110 00100000 01101100 01100101 
01100110 01110100 00100000 01101110 01100101 01110101 01110010 01100001 01101100 
00100000 01100110 01101111 01110010 01100001 01101101 01101001 01101110 01100001 
00100000 01101110 01100001 01110010 01110010 01101111 01110111 01101001 01101110 
01100111 00101110 00100000 01001101 01101111 01100100 01100101 01110010 01100001 
01110100 01100101 00100000 01100001 01100011 01110001 01110101 01101001 01110010 
01100101 01100100 00100000 01110011 01110000 01101001 01101110 01100001 01101100 
00100000 01100011 01100001 01101110 01100001 01101100 00100000 01110011 01110100 
01100101 01101110 01101111 01110011 01101001 01110011 00100000 01101110 01101111 
01110100 01100101 01100100 00100000 01100100 01110101 01100101 00100000 01110100 
01101111 00100000 01100101 01101110 01101000 01100001 01101110 01100011 01101001 
01101110 01100111 00100000 01110000 01100101 01110010 01101001 01100100 01110101 
01110010 01100001 01101100 00100000 01100110 01101001 01100010 01110010 01101111 
01110011 01101001 01110011 00100000 01110111 01101001 01110100 01101000 00100000 
01100001 01110011 01111001 01101101 01101101 01100101 01110100 01110010 01101001 
01100011 00100000 01101101 01101111 01110010 01100101 00100000 01100110 01101111 
01100011 01100001 01101100 00100000 01100101 01111000 01110100 01110010 01101001 
01101110 01110011 01101001 01100011 00100000 01101001 01101101 01110000 01110010 
01100101 01110011 01110011 01101001 01101111 01101110 00100000 01101111 01101110 
00100000 01110100 01101000 01100101 00100000 01110010 01101001 01100111 01101000 
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01110100 00100000 01101100 01100001 01110100 01100101 01110010 01100001 01101100 
00100000 01110110 01100101 01101110 01110100 01110010 01100001 01101100 00100000 
01110100 01101000 01100101 01100011 01100001 01101100 00100000 01110011 01100001 
01100011 00101110 00100000 01001110 01100101 01100111 01101100 01101001 01100111 
01101001 01100010 01101100 01100101 00100000 01110011 01110000 01101111 01101110 
01100100 01111001 01101100 01101111 01101100 01101001 01110011 01110100 01101000 
01100101 01110011 01101001 01110011 00100000 01101111 01100110 00100000 01001100 
00110010 00100000 01101111 01101110 00100000 01001100 00110011 00100000 01101110 
01101111 01110100 01100101 01100100 00101110 00100000 01001110 01101111 01101110 
00100000 01100101 01101110 01101000 01100001 01101110 01100011 01101001 01101110 
01100111 00100000 01100011 01111001 01110011 01110100 01101001 01100011 00100000 
01100110 01101111 01100011 01101001 00100000 01101110 01101111 01110100 01100101 
01100100 00100000 01100001 01101100 01101111 01101110 01100111 00100000 01110100 
01101000 01100101 00100000 01110000 01101111 01110011 01110100 01100101 01110010 
01101001 01101111 01110010 00100000 01100101 01101100 01100101 01101101 01100101 
01101110 01110100 01110011 00100000 01110010 01100101 01110000 01110010 01100101 
01110011 01100101 01101110 01110100 01101001 01101110 01100111 00100000 01110011 
01101101 01100001 01101100 01101100 00100000 01110000 01110011 01100101 01110101 
01100100 01101111 01101101 01100101 01101110 01101001 01101110 01100111 01101111 
01100011 01100101 01101100 01100101 01110011 00101110 00001010 00001010 00110010 
00101110 00001001 01010000 01101111 01110011 01110100 01101111 01110000 01100101 
01110010 01100001 01110100 01101001 01110110 01100101 00100000 01100110 01110101 
01110011 01101001 01101111 01101110 00100000 01100001 01101110 01100100 00100000 
01101100 01100001 01101101 01101001 01101110 01100101 01100011 01110100 01101111 
01101101 01111001 00100000 01101110 01101111 01110100 01100101 01100100 00100000 
01100001 01110100 00100000 01001100 00110100 00101101 01001100 00110101 00100000 
01101100 01100101 01110110 01100101 01101100 01110011 00100000 01110111 01101001 
01110100 01101000 00100000 01101111 01110011 01110011 01100101 01101111 01110101 
01110011 00100000 01100110 01110101 01110011 01101001 01101111 01101110 00100000 
01100001 01101110 01110100 01100101 01110010 01101001 01101111 01110010 01101100 
01111001 00101110 00100000 01001111 01110011 01110011 01100101 01101111 01110101 
01110011 00100000 01101000 01111001 01110000 01100101 01110010 01110100 01110010 
01101111 01110000 01101000 01111001 00100000 01101111 01100110 00100000 01110100 
01101000 01100101 00100000 01110000 01101111 01110011 01110100 01100101 01110010 
01101001 01101111 01110010 00100000 01100101 01101100 01100101 01101101 01100101 
01101110 01110100 01110011 00100000 01101110 01101111 01110100 01100101 01100100 
00100000 01100001 01110100 00100000 01001100 00110100 00100000 01100001 01101110 
01100100 00100000 01001100 00110101 00101110 00001010 00001010 00110011 00101110 
00001001 01001100 00110101 00101101 01010011 00110001 00100000 01101100 01100101 
01110110 01100101 01101100 00100000 01110011 01101000 01101111 01110111 01110011 
00100000 01110011 01110101 01100010 01110100 01101100 01100101 00100000 01101100 
01100101 01100110 01110100 00100000 01100011 01100101 01101110 01110100 01110010 
01100001 01101100 00100000 01100010 01110010 01101111 01100001 01100100 00101101 
01100010 01100001 01110011 01100101 01100100 00100000 01100100 01101001 01110011 
01101011 00100000 01110000 01110010 01101111 01110100 01110010 01110101 01110011 
01101001 01101111 01101110 00101110 00100000 01010011 01110000 01101001 01101110 
01100001 01101100 00100000 01100011 01100001 01101110 01100001 01101100 00100000 
01100001 01101110 01100100 00100000 01100110 01101111 01110010 01100001 01101101 
01101001 01101110 01100001 00100000 01100001 01110010 01100101 00100000 01110000 
01100001 01110100 01100101 01101110 01110100 00101110 00100000 01001110 01101111 
00100000 01100111 01110010 01101111 01110011 01110011 00100000 01110100 01101000 
01100101 01100011 01100001 01101100 00100000 01110011 01100001 01100011 00100000 
01100100 01100101 01100110 01101111 01110010 01101101 01101001 01110100 01111001 
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00101110 00001010 00001010 01001110 01101111 01110100 01100101 00100000 01110100 
01101000 01100001 01110100 00100000 01110100 01101000 01100101 00100000 01110011 
01110100 01100001 01100010 01101001 01101100 01101001 01110100 01111001 00100000 
01101111 01100110 00100000 01100110 01101001 01101110 01100100 01101001 01101110 
01100111 01110011 00100000 01100011 01100001 01101110 01101110 01101111 01110100 
00100000 01100010 01100101 00100000 01100100 01100101 01110100 01100101 01110010 
01101101 01101001 01101110 01100101 01100100 00100000 01101001 01101110 00100000 
01110100 01101000 01100101 00100000 01100001 01100010 01110011 01100101 01101110 
01100011 01100101 00100000 01101111 01100110 00100000 01110000 01110010 01101001 
01101111 01110010 00100000 01101001 01101101 01100001 01100111 01101001 01101110 
01100111 00100000 01100110 01101111 01110010 00100000 01100011 01101111 01101101 
01110000 01100001 01110010 01101001 01110011 01101111 01101110 00101111 01100011 
01101111 01110010 01110010 01100101 01101100 01100001 01110100 01101001 01101111 
01101110 00101110 00001010 01000011 01101111 01110010 01110010 01100101 01101100 
01100001 01110100 01101001 01101111 01101110 00100000 01110111 01101001 01110100 
01101000 00100000 01110000 01110010 01101001 01101111 01110010 00100000 01101001 
01101101 01100001 01100111 01101001 01101110 01100111 00100000 01101001 01110011 
00100000 01100001 01100100 01110110 01101001 01110011 01100101 01100100 00100000 
01110100 01101111 00100000 01100100 01101111 01100011 01110101 01101101 01100101 
01101110 01110100 00100000 01110011 01110100 01100001 01100010 01101001 01101100 
01101001 01110100 01111001 00100000 01101111 01100110 00100000 01100110 01101001 
01101110 01100100 01101001 01101110 01100111 01110011 00100000 01100100 01100101 
01110011 01100011 01110010 01101001 01100010 01100101 01100100 00101110 00001010 
00001010 00101101 01000101 01101100 01100101 01100011 01110100 01110010 01101111 
01101110 01101001 01100011 01100001 01101100 01101100 01111001 00100000 01010011 
01101001 01100111 01101110 01100101 01100100 00100000 01100010 01111001 00111010 
00100000 01010010 01000001 01000100 01001001 01001111 01001100 01001111 01000111 
01001001 01010011 01010100 00101100 00100000 01000001 01000100 01001101 01001001 
01001110 00100000 01101111 01101110 00001001 00110000 00110110 00101111 00110000 
00110111 00101111 00110010 00110000 00110001 00110000 00100000 00110001 00111010 
00110010 00110010 00111010 00110000 00110001 00100000 01010000 01001101 
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Comparison and Evaluation of Electoral Systems 
Ayan Banerjee, Srijan Paria 

Department of Computer Science, Ramakrishna Mission Residential College, Narendrapur 
  
Abstract: The current electoral system in India has recently come into scrutiny due to its high 
disproportionality, making voters wary of the system. At the same time, many countries use 
some other types of electoral systems, which are often quite different from the system we use 
in India. This paper studies the different types of electoral systems that are currently used in 
the world. It evaluates the proportionality and party fragmentation of each system by using 
suitable mathematical tools. It then checks how much compatible these systems are when 
compared to the Indian conditions. Finally, it proposes a system which might be compatible 
and suitable for India. 

Keywords: FPTP, PR, D’Hondt method, Webster/Sainte-Laguë method, Gallagher index, 
Effective no. of parties. 
  

I.   INTRODUCTION 

The choice of electoral system is one of the most important institutional decisions for any 
democracy, yet only rarely are electoral systems consciously and deliberately selected. Often 
the choice is essentially accidental, the result of an unusual combination of circumstances, of 
a passing trend, or of a quirk of history, with the impact of colonialism and the effects of 
influential neighbours often especially strong. Yet in almost all cases the choice of a 
particular electoral system has a profound effect on the future political life of the country 
concerned, and in most cases electoral systems, once chosen, remain fairly constant as 
political interests congeal around and respond to the incentives presented by them. 

At the most basic level, electoral systems translate the votes cast in an election into seats won 
by parties and candidates. The key variables are the electoral formula used (i.e., whether the 
system is majoritarian or proportional, and what mathematical formula is used to calculate the 
seat allocation) and the district magnitude (not how many voters live in a district, but how 
many members of parliament that district elects). Electoral system design also affects many 
areas of electoral laws: the choice of electoral system has an influence on the way in which 
district boundaries are drawn, how voters are registered, the design of ballot papers, how 
votes are counted, along with numerous other aspects of the electoral process. 

Political institutions shape the rules of the game under which democracy is practised, and it is 
often argued that the easiest political institution to be manipulated, for good or for bad, is the 
electoral system, because in translating the votes cast in a general election into seats in the 
legislature, the choice of electoral system can effectively determine who is elected and which 
party gains power. Even with exactly the same number of votes for parties, one electoral 
system might lead to a coalition government while another might allow a single party to 
assume majority control. But a number of other consequences of electoral systems go beyond 
this primary effect. The type of party system which develops, in particular the number and 
the relative sizes of political parties in parliament, is heavily influenced by it. So is the 
internal cohesion and discipline of parties: some systems may encourage factionalism, where 
different wings of one party are constantly at odds with each other, while another system 
might encourage parties to speak with one voice and suppress dissent. Electoral systems can 
also influence the way parties campaign and the way political élites behave, thus helping to 



determine the broader political climate; they may encourage, or retard, the forging of 
alliances between parties; and they can provide incentives for parties and groups to be broad-
based and accommodating, or to base themselves on narrow appeals to ethnicity or kinship 
ties. In addition, if an electoral system is not considered “fair” and does not allow the 

opposition to feel that they have the chance to win next time around, an electoral system may 
encourage losers to work outside the system, using non-democratic, confrontationalist and 
even violent tactics. And finally the choice of electoral system will determine the ease or 
complexity of the act of voting. 

But before we analyse some of the electoral systems that are used around the world, we must 
first set up the conditions that an ideal electoral system must try to satisfy. 

II.   CRITERIA FOR AN IDEAL ELECTORAL SYSTEM 

1. Fair and Just Representation – An elected body must properly represent its electorate. 
It must not over-represent or under-represent any section of the electorate. It must be 
a representative sample of all the different voices comprising the electorate. 

2. Proportional Representation – A party must win seats in accordance to its vote share. 
There must not be a big difference between a party’s vote share and its seat share. 

3. Accessibility – The electoral system must not be too complex but be easy to 
understand by the average voter. 

4. Stability – The electoral system must ensure and promote stability in government 
formation and function as well as discourage massive policy shifts between one 
government and the next one. 

5. Reduce Tactical Voting – The electoral system must encourage voters to vote 
honestly for their most favourite candidate rather than vote tactically against their 
least favourite candidate. 

6. Prevent Fragmentation – The electoral system must not lead to excessive 
fragmentation within the elected body which might severely affect its stability. 

7. Prevent Polarisation – The electoral system must encourage parties to work with each 
other and find common ground to make consensual decisions rather than divide them 
into adversarial rivals with polar opposite worldviews. 

8. Competitiveness – The electoral system must encourage competition among 
candidates and reduce the number of safe seats and uncontested seats. 

9. Low Wasted Votes – The electoral system must not result in a high number of wasted 
votes. 

10. Cost Effective – The cost of conducting an election and calculating the result must be 
reasonably within an acceptable range. 

III.   MEASURES TO EVALUATE DISPROPORTIONALITY AND 
FRAGMENTATION 

Before we begin analysing the different types of electoral systems, we must first acquaint 
ourselves with some important statistical methodologies, which will be very important in 
comparing these systems. 

1. Gallagher Index –   The Gallagher index is a statistical analysis methodology which 
measures an electoral system’s relative disproportionality between votes received and 
seats allotted in a legislature. Michael Gallagher, who created the index, referred to it 
as a “least squares index”. The index is therefore commonly abbreviated as “LSq”. 



LSq = √
1

2
∑(𝑉𝑖 − 𝑆𝑖)2
𝑛

𝑖=1

 

2. Effective No. of Parties – The effective no. of parties is a concept introduced by 
Laakso and Taagepera which provides for an adjusted no. of political parties in a 
country's party system. The idea behind this measure is to count parties and, at the 
same time, to weight the count by their relative strength. The effective no. of parties is 
a frequent operationalization for the fragmentation of a party system. 

ENP =
1

∑ 𝑝𝑖2𝑛
𝑖=1

 

IV.   TYPES OF ELECTORAL SYSTEMS 

Electoral systems can be broadly classified into 3 types: 
1. Majoritarian electoral system 
2. Proportional electoral system 
3. Semi-proportional electoral system 

V.   MAJORITARIAN ELECTORAL SYSTEMS 

A majoritarian electoral system is an electoral system which uses the winner-takes-all 
principles and in this way provides majoritarian representation. The distinguishing feature of 
such systems is that they almost always use single-member constituencies. Some examples of 
such a system are first past the post system, two-round voting system, instant runoff voting 
system, etc. 

A. First Past The Post (FPTP) System 

The current electoral system used in India is called first past the post (FPTP) system. It is the 
simplest electoral system in the world. In this system, voters cast their vote for a candidate of 
their choice and the candidate who receives the most votes wins. It is primarily used for 
single-member constituencies. 

Countries that use FPTP system: India, UK, USA. 

Algorithm for Indian system: 
We assume that all votes cast are valid 
Let c be the total no. of constituencies 
For k=1 to c 
   Let n be the total no. of candidates participating in the constituency 
   Let v be an array of size n which contains the total no. of votes received by each candidate 
   Let max,w be variables with initial value 0 
   For i=1 to n 
      If vi>max 
         max=vi 
         w=i 
      Endif 
   Endfor 
   wth candidate is the winner 
Endfor 



Example: 
1. Theoretical Example :- 

In a particular constituency, the following is the election result.
Candidate Votes Vote % 
A 50 39.06  
B 35 27.34 
C 15 11.72 
D 28 21.88 

Total 128 100.00 
Here, A wins the election even though >60% of the voters did not vote for them. 

2. Real World Example :- 
2022 Punjab Legislative Assembly Election 

Party Votes Vote % Seats Seat % 
AAP 65,38,783 42.01 92 78.63 
INC 35,76,684 22.98 18 15.38 
SAD+ 31,36,518 20.15 4 3.42 
NDA 12,03,835 7.74 2 1.71 
Others 9,97,592 6.41 1 0.86 
NOTA 1,10,320 0.71 0 0.00 
Total 1,55,63,732 100.00 117 100.00 

 

 

Gallagher Index: 
Party Vote % Seat % Difference Difference Squared 

AAP 42.01 78.63 -36.62 1341.0244 
INC 22.98 15.38 7.6 57.76 
SAD+ 20.15 3.42 16.73 279.8929 
NDA 7.74 1.71 6.03 36.3609 
Others 6.41 0.86 5.55 30.8025 
NOTA 0.71 0.00 0.71 0.5041 

Total 1746.3448 
Total/2 873.1724 

Square Root of (Total/2) 29.55 
 
 
 

Votes

AAP
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SAD+

NDA

Others
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Seats

AAP
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NDA

Others



Effective No. of Parties: 

Party Seats(s) (𝒔 ∑𝒔⁄ )𝟐 

AAP 92 0.6183066696 
INC 18 0.0236686391 
SAD+ 4 0.0011688217 
NDA 2 0.0002922054 
Independent 1 0.0000730514 
Total(∑) 117 0.64351 
𝟏
∑(𝒔 ∑ 𝒔⁄ )

𝟐⁄  1.55 

Problems with FPTP: 
1. Winner-Takes-All – In FPTP, the candidate with the most votes wins the seat 

irrespective of whether they got a majority of the vote or not. As long as they get 
more votes than everybody else, they are good to go. When there are more than two 
candidates, which is often the case, this leads to minority rule. 

2. Two Party State – According to Duverger’s law, FPTP promotes a two party state. 
Over time, there remain only two significant big parties, with minor third parties 
pushed into irrelevance. This is unsuitable in the modern world, where there are a 
multitude of political viewpoints. 

3. Polarisation – A two party state promotes polarisation of the electoral environment as 
these two parties have nothing in common and treat the other as their sworn enemies. 
It also leads to massive shifts in governmental policies whenever there is a change in 
government. 

4. Geographical Favouritism – FPTP over-represents parties who can concentrate their 
vote into certain electoral constituencies. On the other hand, parties that do not 
concentrate their vote end up getting under-represented. So, FPTP favours strong 
regional parties and hampers minor national parties. 

5. Safe Seats – FPTP tends to deliver a significant number of safe seats, where a 
representative is sheltered from any but the most dramatic change in voting 
behaviour. In extreme cases, this leads to such disillusionment in other candidates that 
the seats go uncontested. This also discourages the voters to come out and vote for the 
opposing candidates because they know it would only be a symbolic exercise. 

6. Gerrymandering – Gerrymandering refers to political manipulation of electoral 
constituency boundaries with the intent of creating undue advantage for a particular 
party, group or socio-economic class within that constituency. FPTP is very prone to 
gerrymandering. So, whoever controls the redistricting process has undue power to 
manipulate an election in such a way that it disproportionally favours their favourite 
candidate or party. 

7. Spoiler Effect – Under FPTP, a small party may draw votes and seats away from a 
larger party that is more similar to, and therefore give an advantage to one it is less 
similar to. 

8. Tactical Voting – FPTP encourages tactical voting. Voters have an incentive to vote 
for a candidate who they predict is more likely to win, as opposed to their preferred 
candidate who may be unlikely to win and for whom a vote could be considered as 
wasted. 

 
 

9. Wasted Votes – Wasted votes are seen as those cast for losing candidates, and for 
winning candidates in excess of number required for victory. They have no impact on 



the makeup of the elected body or the election result. This, in turn, lowers voter 
participation since they know their votes do not matter. A common feature of FPTP is 
a large number of wasted votes. 

B. Two-Round System 

The two-round system is a voting method used to elect a single candidate, where voters cast a 
single vote for their preferred candidate. The election proceeds to a second round only if in 
the first round no candidate received a simple majority of votes cast, or some other lower 
percentage. Under this system, usually only the top two candidates in the first round qualify 
to the second. Other candidates are excluded from the second round. 

Countries that use Two-Round system: France, Haiti. 

Algorithm for French system: 
We assume that all votes cast are valid 
Let c be the total no. of constituencies 
For k=1 to c 
   Let n be the total no. of eligible voters in the constituency 
   Let m be the total no. of votes cast 
   Let x be the total no. of candidates participating in the constituency 
   Let v be an array of size x which containsthe total no. of votes received by each candidate 
   Let flag,q be variables with initial value 0 
   For i=1 to x 
      If ((vi>((1/2)*m)) && (vi>=((1/4)*n))) 
         ith candidate is the winner 
         flag=1 
         break 
      Endif 
      If (vi>=((1/8)*n)) 
         q=q+1 
      Endif 
   Endfor 
   If flag==0 
      Let j be a variable with initial value 0 
      If q>2 
         Let r be an array of size q which contains the candidate no. of those candidates who 
         qualify for the second round 
         For i=1 to x 
            If (vi>=((1/8)*n)) 
               rj=i 
               j=j+1 
            Endif 
         Endfor 
      Endif 
      Else 
         Let r be an array of size 2 which contains the candidate no. of those candidates who 
         qualify for the second round 
         Let a,b be variables with initial value 0 
         For i=1 to x 
            If vi>a 



               b=a 
               r2=r1 
               a=vi 

               r1=i 
            Endif 
            Else if vi>b 
               b=vi 
               r2=i 
            Endelseif 
         Endfor 
      Endelse 
   If (flag!=1) 
      Hold second round of elections where candidate nos. in r only participate and the rest are 
      eliminated 
      Let max,w be variables with initial value 0 
      Let z be the no. of candidates qualified 
      Let s be an array of size z which contains the total no. of votes received by each candidate 
      in the second round 
      For i=1 to z 
         If(si>max) 
            max=si 
            w=i 
         Endif 
      Endfor 
      wth candidate is the winner 
   Endif 
Endfor 

Example: 
1. Theoretical Example :- 

Let the total no. of eligible voters within a particular constituency be 200. 
Candidate Votes Vote % 
A 10 6.94 
B 60 41.67 
C 20 13.88 
D 15 10.42 
E 24 16.67 
F 15 10.42 

Total 144 100.00 
Since, none of the candidates satisfy the first criteria, a second round of elections has 
to be held. We see that the no. of candidates crossing the 12.5% of all eligible voters 
(=25) mark is not greater than 2, so we select the candidates with the highest and the 
second highest no. of votes to participate in the second round, which in this case is B 
and E, and all the other candidates are eliminated. 

Candidate Votes Vote % 
B 60 48 
E 65 52 

Total 125 100 
Thus, E wins the election. 
 



2. Real World Example :- 
2017 French Legislative Election 

Party 
First Round Second Round 

Seats Seat % 
Votes Vote % Votes Vote % 

LREM/MoDem 73,23,496 32.33 89,26,901 49.11 350 60.66 
LR/UDI/DVD 48,85,997 21.57 48,98,061 26.95 136 23.57 
FN 29,90,454 13.20 15,90,869 8.75 8 1.39 
FI 24,97,622 11.02 8,83,573 4.86 17 2.95 
PS/PRG/DVG 21,54,269 9.51 13,61,190 7.49 45 7.80 
Ecologists 9,73,527 4.30 23,197 0.13 1 0.17 
PCF 6,15,487 2.72 2,17,833 1.20 10 1.73 
Others 12,13,312 5.35 2,74,442 1.51 10 1.73 

Total 2,26,54,164 100.00 1,81,76,066 100.00 577 100.00 
 

 

Gallagher Index: 

Party 
Vote % 

(First Round) Seat % Difference 
Difference 
Squared 

LREM/MoDem 32.33 60.66 -28.33 802.5889 
LR/UDI/DVD 21.57 23.57 -2 4 
FN 13.20 1.39 11.81 139.4761 
FI 11.02 2.95 8.07 65.1249 
PS/PRG/DVG 9.51 7.80 1.71 2.9241 
Ecologists 4.30 0.17 4.13 17.0569 
PCF 2.72 1.73 0.99 0.9801 
Others 5.35 1.73 3.62 13.1044 

Total 1045.2554 
Total/2 522.6277 

Square Root of (Total/2) 22.86 
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Effective No. of Parties: 

Party Seats(s) (𝒔 ∑𝒔⁄ )𝟐 

LREM/MoDem 350 0.3679463189 
LR/UDI/DVD 136 0.0555553887 
FN 8 0.0001922332 
FI 17 0.0008680529 
PS/PRG/DVG 45 0.0060823779 
Ecologists 1 0.0000030036 
PCF 10 0.0003003643 
DIV 3 0.0000270328 
DLF 1 0.0000030036 
REG 5 0.0000750911 
EXD 1 0.0000030036 

Total(∑) 577 0.43106 
𝟏
∑(𝒔 ∑𝒔⁄ )

𝟐⁄  2.32 

Issues: 
1. This system does not solve the problem of disproportionality. As such, it repeats most 

of the flaws of the FPTP system that arise due to disproportionality. 
2. Conducting two round elections in a country as big and geographically diverse as 

India is just not feasible. 
3. In eliminating most candidates after the first round, it disincentivizes voter turnout. 
4. Voters are forced to vote tactically in case their favourite candidate gets eliminated 

after the first round. 
5. This system does not reduce the spoiler effect. 

C. Instant-Runoff Voting (IRV) System 

Instant-runoff voting is a type of ranked preferential voting method. It uses a majority voting 
rule in single winner elections where there are more than two candidates. Voters in IRV rank 
their candidates in order of preference. Ballots are initially counted for each voter’s first 

preference. If a candidate has more than half of the vote based on first preferences that 
candidate wins. If not, then the candidate with the fewest votes is eliminated, and their voters’ 

next preferences are checked and subsequently distributed. This process continues until a 
candidate has more than half of the votes. This system reduces the spoiler effect and is also 
significantly less susceptible to tactical voting. 

Countries that use IRV system: Australia, Papua New Guinea. 

Algorithm for Australian system: 
We assume that all votes cast are valid 
Let c be the total no. of constituencies 
For k=1 to c 
   Let n be the total no. of candidates participating in th constituency 
   Let x be the total no. of votes cast 
   Let b be a two dimensional array of size x,n which contains the ballot details of each vote 
   Let v be an array of size n which contains the total no. of votes received by each candidate 
   Let pref be an array of size x which contains the preference no. of the respective ballot 
   which is currently in play, where all elements have initial value 1 



   For i=1 to x 
      Let z be a variable 
      z=bi1 
      vz=vz+1 
   Endfor 
   Let flag be a variable with initial value 0 
   While flag!=1 
      Let maxc,minc be two variables 
      Let max be a variable with initial value 0 
      Let min be a variable with initial value ∞ 
      For i=1 to n 
         If max<vi 
            max=vi 
            maxc=i 
         Endif 
         If min>vi 
            min=vi 
            minc=i 
         Endif 
      Endfor 
      If (max>((1/2)*x)) 
         flag=1 
      Endif 
      Else 
         mincth candidate is eliminated and their voters next preferences are checked and 
         subsequently distributed 
         For i=1 to x 
            Let z,q be two variables 
            z=prefi 
            If biz==minc 
               prefi=prefi+1 
               q=prefi 
               While biq is eliminated 
                  prefi=prefi+1 
                  q=prefi 
               Endwhile 
               z=biq 
               vz=vz+1 
            Endif 
         Endfor 
      Endelse 
   Endwhile 
   maxcth candidate is the winner 
Endfor 

  



Example: 
1. Theoretical Example :- 

In a particular constituency, the following is the election result. 

Candidate 
Ballot Details First Preference 

Votes a b c d e f g h 
Bob 2 4 2 1 4 1 3 4 2 
Sue 4 2 1 2 3 3 4 1 2 
Bill 1 3 4 3 1 4 1 2 3 
Matt 3 1 3 4 2 2 2 3 1 

Total 8 
Here majority is 5. Since, no candidate has a majority, the candidate with the 
minimum no. of votes Matt is eliminated and their voters (b) next valid preference is 
checked and subsequently distributed. Now, the tally stands at: 
 

Since, no candidate has a majority, the candidate with the minimum no. of votes Bob 
is eliminated and their voters (d & f) next valid preference is checked and 
subsequently distributed. Now, the tally stands at: 

Candidate Votes 
Sue 5 
Bill 3 

Since, Sue has got a majority, she is declared as the winner. 
 

2. Real World Example:- 
2019 Australian Federal Election 

Party 
First Preference 

Votes 
First Preference 

Vote % Seats Seat % 

Coalition 59,06,875 41.44 77 50.99 
Labor 47,52,160 33.34 68 45.03 
Greens 14,82,923 10.40 1 0.66 
Independents 4,79,836 3.37 3 1.99 
Others 16,31,599 11.45 2 1.33 

Total 1,42,53,393 100.00 151 100.00 
 

 

First Preference Votes

Coalition

Labor

Greens

Independents

Others

Seats

Coalition

Labor

Greens

Independents

Others

Can1didate Votes 
Bob 2 
Sue 3 
Bill 3 



Gallagher Index: 
 

 
Effective No. of Parties: 
We assume that all independent candidates are individual separate parties. 

Party Seats(s) (𝒔 ∑ 𝒔⁄ )𝟐 

Coalition 77 0.2600324547 
Labor 68 0.2027981229 
Greens 1 0.0000438577 
KAP 1 0.0000438577 
Centre Alliance 1 0.0000438577 
Independents 3 3×0.0000438577 

Total(∑) 151 0.46309 
𝟏
∑(𝒔 ∑ 𝒔⁄ )

𝟐⁄  2.16 

Issues: 
1. This system does not solve the problem of disproportionality. As such, it repeats most 

of the flaws of the FPTP system that arise due to disproportionality. 
2. In the case of Australia, only a fully ranked ballot is considered valid. So, voters are 

forced to give a ranking to all the candidates on the ballot, many of whom they might 
not even know. This causes the phenomenon of donkey voting, where the voter ranks 
the candidates based on the order they appear on the ballot itself. 

3. The current system of EVMs in India would have to be significantly altered, if not 
outright disbanded, to accommodate such a system. 

4. From a voter’s perspective, changing from FPTP to IRV would completely change the 
way one votes. There needs to be a sustained awareness and educational campaign 
about the changes in the system, as an unaware voter may get confused in the 
transition, before we can even think of implementing such a system. 

VI.   PROPORTIONAL ELECTORAL SYSTEMS 

Proportional representation is the most widely used electoral system for national legislatures, 
with the parliaments of over eighty countries elected by various forms of the system. The 
essence of such systems is that all votes contribute to the result—not just a plurality, or a 
bare majority—and that the system produces mixed, balanced representation reflecting how 
votes are cast. Some examples of such a system are partly-list proportional system, mixed 
member proportional system, etc. 

  

Party First Preference 
Vote % 

Seat % Difference Difference 
Squared 

Coalition 41.44 50.99 -9.55 91.2025 
Labor 33.34 45.03 -11.69 136.6561 
Greens 10.40 0.66 9.74 94.8676 
Independents 3.37 1.99 1.38 1.9044 
Others 11.45 1.33 10.12 102.4144 

Total 427.045 
Total/2 213.5225 

Square Root of (Total/2) 14.61 



Closed List and Open List 

In a closed list systems, each political party has pre-decided who will receive the seats 
allocated to that party in the elections, so that the candidates positioned highest on this list 
tend to always get a seat in the parliament while the candidates positioned very low on the 
closed list will not. Voters vote only for the party, not for individual candidates. 

An open list describes any variant of a party-list where voters have at least some influence on 
the order in which a party's candidates are elected. Open list can be anywhere from “partially 

open”, where a candidate can move up a predetermined list only with a certain number of 

votes, to “completely open”, where the order of the list completely depends on the number of 
votes each individual candidate gets. 

Allocation of Seats 

It is often unusual that parties get the exact no. of seats that they are eligible to, mostly due to 
the fact that it might be a fractional number. To convert these fractions into whole numbers, 
we use several methods, some of which are: 

1. D’Hondt Method – It belongs to the class of highest-averages methods. After all the 
votes have been tallied, successive quotients are calculated for each party. The party 
with the largest quotient wins one seat, and its quotient is recalculated. This is 
repeated until the required number of seats is filled. The formula for the quotient is as 
follows. 

quot =
𝑉

𝑠 + 1
 

2. Webster/Sainte-Laguë Method – It also belongs to the class of highest-averages 
methods. The D'Hondt method favours larger parties while the Webster/Sainte-Laguë 
method doesn't. The Webster/Sainte-Laguë method is generally seen as more 
proportional, but risks an outcome where a party with more than half the votes can 
win fewer than half the seats. 
After all the votes have been tallied, successive quotients are calculated for each 
party. The formula for the quotient is as follows. 

quotient =
𝑉

2𝑠 + 1
 

A. Party-List Proportional System 

Party-list proportional representation is a subset of proportional electoral systems in which 
multiple candidates are elected through their position on an electoral list. In these systems, 
parties make lists of candidates to be elected, and seats are distributed to each party in 
proportion to the number of votes the party receives. 

Countries that use party-list proportional system: Netherlands, Israel. 

Algorithm for Dutch system: 
We assume that all votes cast are valid 
Let n be the total no. of seats 
Let tv be the total no. of votes cast 
Let x be the total no. of parties participating in the election 
Let s be an array of size x which contains the total no. of seats won by each party, where all 
elements have initial value 0 
Let v be an array of size x which contains the total no. of votes received by each party 



threshold=tv/n 
rem=n 
For i=1 to x 
   If vi>=threshold 
      si=floor(vi/threshold) 
      res=res-si 
   Endif 
Endfor 
Let q be an array of size x which contains the respective quotient value for each party, where 
all elements have initial value 0 
While res>0 
   Let maxq be a variable with initial value 0 
   Let now be a variable 
   For i=1 to x 
      If vi>=threshold 
         qi=vi/(si+1) 
         If qi>maxq 
            maxq=qi 

            now=i 
         Endif 
      Endif 
   Endfor 
   snow=snow+1 
   res=res-1 
Endwhile 
Let c be the total no. of candidates in each party that are participating in the election 
Let p be a two dimensional array of size x,c which contains the total no. of votes received by 
each individual candidate of the respective party 
For i=1 to x 
   If si>0 
      fillseat=0 
      For j=1 to c 
         While fillseat<si 
            If pij>=(threshold/4) 
               pij

th candidate is elected 
               fillseat=fillseat+1 
            Endif 
         Endwhile 
      Endfor 
      If fillseat<si 
         For j=1 to c 
            While fillseat<si 
               If pij

th candidate is already elected 
                 continue 
               Endif 
               Else 
                  pij

th candidate is elected 
                  fillseat=fillseat+1 
               Endelse 
            Endwhile 



         Endfor 
      Endif 
   Endif 
Endfor 

Example: 
1. Theoretical Example :- 

Let there be 60 seats in total and the total valid votes cast be 12,000. Thus, the 
threshold value for parliamentary representation for a party would be 200 votes. Let 
the total no. parties participating in the election be 9. The following is the result of the 
election. 

Party Votes Vote % 
Direct 
Seats 

Residual 
Seats 

Total 
Seats Seat % 

A 1160 9.67 5 1 6 10.00 
B 4088 34.07 20 1 21 35.00 
C 763 6.36 3 1 4 6.67 
D 2525 21.04 12 1 13 21.67 
E 1663 13.86 8 0 8 13.33 
F 406 3.38 2 0 2 3.33 
G 194 1.61 0 0 0 0.00 
H 203 1.69 1 0 1 1.67 
I 998 8.32 4 1 5 8.33 
Total 12000 100.00 55 5 60 100.00 

Since, G is below the threshold value, it is not liable to win any seats. All the other 
parties that are liable to get seats get so in a two-step manner. Each party’s no. of 

votes is divided by the threshold value and rounded down to the nearest integer to 
give an initial no. of seats. In this example, the initial no. of seats received by A is 
calculated as 1160/200=5.8 which is rounded down to 5 direct seats. Similarly, all 
other parties are allocated their direct seats in this way. Next, we allocate the residual 
seats, which in this case happen to be 5, by the D’Hondt method. Initially, the 

respective quotient stands at 
Party Quotient 

A 193.33 
B 194.67 
C 190.75 
D 194.23 
E 184.78 
F 135.33 
H 101.50 
I 199.60 

So, I gets the 1st residual seat. I now has 5 seats. 
For allocating the 2nd residual seat, we recalculate the quotient for each of the parties. 
The respective quotient stands at 

  



 
Party Quotient 

A 193.33 
B 194.67 
C 190.75 
D 194.23 
E 184.78 
F 135.33 
H 101.50 
I 166.33 

So, B gets the 2nd residual seat. B now has 21 seats. 
Thus, all the residual seats are allocated in the same manner. 
 
Now, we have to check which candidates of their respective party are elected. Let 
there be 7 candidates running in this election for party C. Their respective vote count 
is as follows. 

Candidate Votes 
CA 40 
CB 315 
CC 25 
CD 48 
CE 33 
CF 258 
CG 44 

Total 763 
Party C has been allocated 4 seats. For individual candidates to supersede the 
hierarchy of the party list and get directly elected, they need to get (threshold/4=)50 
votes on their own. Such candidates are CB and CF and they are elected before 
anybody else on the party list. 
Next, the remaining 2 seats are allocated as per the hierarchy set by the party list. We 
start from the top and see that candidates CA and CC are the two topmost candidates 
that are yet to be elected. The remaining 2 seats are won by them. 
Thus, all individual candidates from their respective party list are elected in the same 
manner. 
 

  



2. Real World Example :- 
 

 

 

  

Votes
VVD
D66
PVV
CDA
SP
PvdA
GL
FvD
PvdD
CU
Volt
JA21
SGP
DENK
Others

Seats
VVD
D66
PVV
CDA
SP
PvdA
GL
FvD
PvdD
CU
Volt
JA21
SGP
DENK
Others

2021 Dutch General Election 
Party Votes Vote % Seats Seat % 

VVD 22,79,130 21.87 34 22.67 
D66 15,65,861 15.02 24 16.00 
PVV 11,24,482 10.79 17 11.34 
CDA 9,90,601 9.50 15 10.00 
SP 6,23,371 5.98 9 6.00 
PvdA 5,97,192 5.73 9 6.00 
GL 5,37,308 5.15 8 5.33 
FvD 5,23,083 5.02 8 5.33 
PvdD 3,99,750 3.84 6 4.00 
CU 3,51,275 3.37 5 3.33 
Volt 2,52,480 2.42 3 2.00 
JA21 2,46,620 2.37 3 2.00 
SGP 2,15,249 2.06 3 2.00 
DENK 2,11,237 2.03 3 2.00 
Others 5,05,213 4.85 3 2.00 

Total 1,04,22,852 100.00 150 100.00 



Gallagher Index: 
Party Vote % Seat % Difference Difference Squared 

VVD 21.87 22.67 -0.80 0.64 
D66 15.02 16.00 -0.98 0.9604 
PVV 10.79 11.34 -0.55 0.3025 
CDA 9.50 10.00 -0.50 0.25 
SP 5.98 6.00 -0.02 0.0004 
PvdA 5.73 6.00 -0.27 0.0729 
GL 5.15 5.33 -0.18 0.0324 
FvD 5.02 5.33 -0.31 0.0961 
PvdD 3.84 4.00 -0.16 0.0256 
CU 3.37 3.33 0.04 0.0016 
Volt 2.42 2.00 0.42 0.1764 
JA21 2.37 2.00 0.37 0.1369 
SGP 2.06 2.00 0.06 0.0036 
DENK 2.03 2.00 0.03 0.0009 
Others 4.85 2.00 2.85 8.1225 

Total 10.8222 
Total/2 5.4111 

Square Root of (Total/2) 2.33 
 
Effective No. of Parties: 

Party Seats(s) (𝒔 ∑ 𝒔⁄ )𝟐 

VVD 34 0.0513777778 
D66 24 0.0256000000 
PVV 17 0.0128444444 
CDA 15 0.0100000000 
SP 9 0.0036000000 
PvdA 9 0.0036000000 
GL 8 0.0028444444 
FvD 8 0.0028444444 
PvdD 6 0.0016000000 
CU 5 0.0011111111 
Volt 3 0.0004000000 
JA21 3 0.0004000000 
SGP 3 0.0004000000 
DENK 3 0.0004000000 
50+ 1 0.0000444444 
BBB 1 0.0000444444 
BIJ1 1 0.0000444444 
Total(∑) 150 0.11716 

𝟏
∑(𝒔 ∑ 𝒔⁄ )

𝟐⁄  8.54 

  



Issues: 
1. Since the entire country is converted into a single constituency, elected members 

effectively do not have any constituency link. 
2. It is not practical to convert a country the size of India into a single constituency. 
3. Due to the threshold being too low, there is excessive fragmentation. This allows too 

many parties into the legislature which affects its stability. 
4. The current system of EVMs in India would have to be significantly altered, if not 

outright disbanded, to accommodate such a system. 
5. From a voter’s perspective, changing from FPTP to party-list proportional system 

would completely change the way one votes. There needs to be a sustained awareness 
and educational campaign about the changes in the system, as an unaware voter may 
get confused in the transition, before we can even think of implementing such a 
system. 

B. Mixed Member Proportional (MMP) System 

Mixed-member proportional representation is an electoral system in which voters get two 
votes: one to decide the representative for their single-seat constituency, and one for a 
political party. Seats in the legislature are filled first by the successful constituency 
candidates, and second, by party candidates based on the percentage of nationwide or region-
wide votes that each party received. 

Countries that use MMP system: Germany, New Zealand. 

Algorithm for New Zealand system: 
We assume that all votes cast are valid 
Let es be the total no. of electorate seats 
Let ls be the total no. of list seats 
Let x be the total no. of parties contesting the election 
Let p be an array of size x which contains the total no. of seats won by each party, where all 
elements have initial value 0 
For k=1 to es 
   Let n be the total no. of candidates participating in the 
   constituency 
   Let v1 be an array of size n which contains the total no. of 
   electorate votes received by each candidate, where each candidate 
   is also a member of a corresponding party in p 
   Let max,w be variables with initial value 0 
   For i=1 to n 
      If v1i>max 
         max=v1i 
         w=i 
      Endif 
   Endfor 
   wth candidate is the winner 
   pw=pw+1 
Endfor 
Let v2 be an array of size x which contains the total no. of party votes received by each party 



Let t be the total no. of party votes cast 
threshold=(5/100)*t 
Let q be an array of size x which contains the respective quotient value for each party, where 
all elements have initial value 0 
While ls>0 
   Let maxq be a variable with initial value 0 
   Let now be a variable 
   For i=1 to x 
      If ((v2i>=threshold) || (pi>0)) 
         qi=v2i/(2*pi+1) 
         If qi>maxq 
            maxq=qi 

            now=i 
         Endif 
      Endif 
   Endfor 
   pnow=pnow+1 
   ls=ls-1 
Endwhile 

Example: 
1. Theoretical Example :- 

Let there be 60 electorate seats and 40 list seats, and the total no. of party votes cast 
be 20,000. Thus, the threshold will be 1,000 votes. The electorate seats are distributed 
among the parties in exactly the same way as discussed above in the FPTP system. 

Party Electorate 
Seats 

Party 
Vote 

Vote % List 
Seats 

Total 
Seats 

Seat % 

A 24 8,000 40.00 1 25 41.67 
B 9 6,000 30.00 10 19 31.67 
C 2 4,800 24.00 13 15 25.00 
D 0 800 4.00 0 0 0.00 
E 1 400 2.00 0 1 1.67 
Total 36 20,000 100.00 24 60 100.00 

Since, D has neither won any electorate seats nor reached the threshold value, it is not 
qualified to get any list seats. On the other hand, E is qualified to get list seats even 
though it has not reached the threshold value as it has won 1 electorate seat. After 
allocation of all electorate seats, the allocation of list seats begins. We allocate the list 
seats by the Webster/Sainte-Laguë method. 
For allocating the 1st list seat, we calculate the quotient for each of the parties that are 
qualified to get list seats. The respective quotient stands at 

  



 
 

So, C gets the 1st list seat. C now has 3 seats. 
For allocating the 2nd list seat, we recalculate the quotient for each of the parties that 
are qualified to get list seats. The respective quotient stands at 

Party Quotient 
A 163.27 
B 315.79 
C 685.71 
E 133.33 

So, C gets the 2nd list seat. C now has 4 seats. 
This is continued until there are no list seats left to allocate. 
 

2. Real World Example:- 
2020 New Zealand General Election 

Party Electorate 
Votes 

Electorate 
Vote % 

Electorate 
Seats 

Party 
Votes 

Party 
Vote % 

List 
Seats 

Total 
Seats 

Seat % 

Labour 13,57,501 48.07 46 14,43,545 50.01 19 65 54.17 
National 9,63,845 34.13 23 7,38,275 25.58 10 33 27.50 
Green 1,62,245 5.74 1 2,26,757 7.85 9 10 8.33 
ACT 97,697 3.46 1 2,19,031 7.59 9 10 8.33 
NZ First 30,209 1.07 0 75,020 2.60 0 0 0.00 
TOP 25,181 0.89 0 43,449 1.51 0 0 0.00 
MP 60,837 2.15 1 33,630 1.16 1 2 1.67 
Others 1,26,683 4.49 0 1,06,713 3.70 0 0 0.00 

Total 28,24,198 100.00 72 28,86,420 100.00 48 120 100.00 
 

 

  

Party Votes

Labour

National

Green

ACT

NZ First

TOP

MP

Others

Seats

Labour

National

Green

ACT

MP

Party Quotient 
A 163.27 
B 315.79 
C 960 
E 133.33 



Gallagher Index: 

Party 
Party 

Vote % Seat % Difference 
Difference 
Squared 

Labour 50.01 54.17 -4.16 17.3056 
National 25.58 27.50 -1.92 3.6864 
Green 7.85 8.33 -0.48 0.2304 
ACT 7.59 8.33 -0.74 0.5476 
NZ First 2.60 0.00 2.6 6.76 
TOP 1.51 0.00 1.51 2.2801 
MP 1.16 1.67 -0.51 0.2601 
Others 3.70 0.00 3.7 13.69 

Total 44.7602 
Total/2 22.3801 

Square Root of (Total/2) 4.73 
 
Effective No. of Parties: 

Party Seats(s) (𝒔 ∑ 𝒔⁄ )𝟐 

Labour 65 0.2934027778 
National 33 0.0756250000 
Green 10 0.0069444444 
ACT 10 0.0069444444 
MP 2 0.0002777778 
Total(∑) 120 0.38319 

𝟏
∑(𝒔 ∑ 𝒔⁄ )

𝟐⁄  2.61 

Issues: 
1. To offset the disproportionality of constituency seats, we need a large proportion of 

list seats. In Germany, the ratio is 1:1, i.e., they have 299 constituency seats and 299 
list seats. In New Zealand’s case, the ratio is 3:2, i.e., there are 72 constituency seats 
and 48 list seats. If such a system is applied to India, this will lead to an extremely 
large legislature, the cost of maintaining which will be very high, and its effectiveness 
greatly hampered. 

2. The big parties can game the system by using decoy lists. They can create a list under 
a different banner and instruct their voters to vote for the decoy list so as to maximize 
their seat winning chances. This has happened in the 2007 Lesotho general election, 

VII.   SEMI-PROPORTIONAL ELECTORAL SYSTEMS 

Semi-proportional representation characterizes multi-winner electoral systems which allow 
representation of minorities, but are not intended to reflect the strength of the competing 
political forces in close proportion to the votes they receive. Semi-proportional voting 
systems can be regarded as compromises between forms of proportional representation such 
as party-list PR, and majoritarian systems such as first-past-the-post voting. Some examples 
of such a system are parallel voting system, single non-transferable vote system, etc. 

  



A. Parallel Voting System 

Parallel voting is a type of mixed electoral system in which representatives are voted into a 
single chamber using two or more different systems, most often first past the past 
voting (FPTP) with party-list proportional system (PR). It differs from MMP in that the multi 
member PR seats are not allocated with the winners of the single member constituencies in 
mind. Essentially, there occur two parallel elections to the legislature by two different 
electoral systems whose winners are not linked to each other. 

Countries that use parallel voting system: Japan, South Korea. 

Algorithm for Japanese system: 
We assume that all votes cast are valid 
Let smc be the total no. of single member fptp constituencies 
Let mmc be the total no. of multi member proportional constituencies 
For k=1 to smc 
   Let n be the total no. of candidates participating in the 
   constituency 
   Let v1 be an array of size n which contains the total no. of 
   votes received by each candidate 
   Let max,w be variables with initial value 0 
   For i=1 to n 
      If v1i>max 
         max=v1i 
         w=i 
      Endif 
   Endfor 
   wth candidate is the winner 
Endfor 
For k=1 to mmc 
   Let x be the total no. of seats in the constituency 
   Let n be the total no. of parties participating in the 
   constituency 
   Let p be an array of size n which contains the total no. of seats 
   won by each party, where all elements have initial value 0 
   Let v2 be an array of size n which contains the total no. of 
   votes received by each party 
   Let q be an array of size n which contains the respective 
   quotient value for each party, where all elements have initial 
   value 0 
   While x>0 
      Let maxq be a variable with initial value 0 
      Let now be a variable 
      For i=1 to n 
         qi=v2i/(pi+1) 
         If qi>maxq 
            maxq=qi 

            now=i 
         Endif 
      Endfor 
      pnow=pnow+1 



      x=x-1 
   Endwhile 
Endfor 

Example 

1. Theoretical Example :- 
Let there be a region which has 36single member constituencies and 1 multi member 
constituency with 24 seats. Let the total no. of votes cast be 20,000. The single 
member constituencies are distributed among the candidates/parties in exactly the 
same way as discussed above in the FPTP system. 

Party 
Single 

Member 
Seats 

Votes Vote % 
Multi 

Member 
Seats 

Total 
Seats 

Seat % 

A 24 8,000 40.00 10 34 56.67 
B 9 6,000 30.00 7 16 26.67 
C 2 4,800 24.00 6 8 13.33 
D 0 800 4.00 1 1 1.67 
E 1 400 2.00 0 1 1.67 
Total 36 20,000 100.00 24 60 100.00 

We allocate the multi member seats by the D’Hondt method. 
For allocating the 1st multi member seat, we calculate the quotient for each of the 
parties. Initially, the respective quotient stands at 
 

So, A gets the 1st multi member seat. 
For allocating the 2nd multi member seat, we recalculate the quotient for each of the 
parties. The respective quotient stands at 

Party Quotient 
A 4000 
B 6000 
C 4800 
D 800 
E 400 

So, B gets the 2nd multi member seat. 
This is continued until there are no multi member seats left to allocate. 

  

Party Quotient 
A 8000 
B 6000 
C 4800 
D 800 
E 400 



2. Real World Example:- 
2021 Japanese General Election 

Party 
FPTP Constituencies Proportional Constituencies Total 

Seats 
Seat % 

Votes Vote % Seats Votes Vote % Seats 

LDP 2,76,26,235 48.08 187 1,99,14,883 34.65 72 259 55.70 
CDP 1,72,15,621 29.96 57 1,14,92,095 20.00 39 96 20.64 
JIP 48,02,793 8.36 16 80,50,830 14.01 25 41 8.82 
NKP 8,72,931 1.52 9 71,14,282 12.38 23 32 6.88 
JCP 26,39,631 4.60 1 41,66,076 7.25 9 10 2.15 
DPP 12,46,812 2.17 6 25,93,396 4.51 5 11 2.37 
RS 2,48,280 0.43 0 22,15,648 3.86 3 3 0.64 
Others 28,04,729 4.88 13 19,18,769 3.34 0 13 2.80 

Total 5,74,57,032 100.00 289 5,74,65,979 100.00 176 465 100.00 
 

 

Gallagher Index: 

Party 
Proportional 

Constituency Vote % Seat % Difference 
Difference 
Squared 

LDP 34.65 55.70 -21.05 443.1025 
CDP 20.00 20.64 -0.64 0.4096 
JIP 14.01 8.82 5.19 26.9361 
NKP 12.38 6.88 5.50 30.25 
JCP 7.25 2.15 5.10 26.01 
DPP 4.51 2.37 2.14 4.5796 
RS 3.86 0.64 3.22 10.3684 
Others 3.34 2.80 0.54 0.2916 

Total 541.9478 
Total/2 270.9739 

Square Root of (Total/2) 16.46 
 

  

PC Votes

LDP
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JIP
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JCP

DPP
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Effective No. of Parties: 
We assume that all independent candidates are individual separate parties. 

Party Seats(s) (𝒔 ∑𝒔⁄ )𝟐 

LDP 259 0.3102370216 
CDP 96 0.0426222685 
JIP 41 0.0077743092 
NKP 32 0.0047358076 
JCP 10 0.0004624812 
DPP 11 0.0005596023 
RS 3 0.0000416233 
SDP 1 0.0000046248 
Independents 12 12×0.0000046248 
Total(∑) 465 0.36649 
𝟏
∑(𝒔 ∑ 𝒔⁄ )

𝟐⁄  2.73 

Issues: 
1. This system does not solve the problem of disproportionality. As such, it repeats most 

of the flaws of the FPTP system that arise due to disproportionality. 
2. Even with PR elements added onto the system, it does not prevent one party 

domination with minority support. Japan has been governed almost exclusively by a 
single party since 1955 under this system, with 1963 being the last time that they had 
majority support. 

3. For small parties to make an impact, there needs to be a large no. of seats available in 
the proportional portion. A large no. of proportional seats along with the single 
member constituencies may result in an extremely large legislature. 

VIII.   PROPOSED ELECTORAL SYSTEM 

We need to find a system that is proportional yet retains a constituency link. We must ensure 
that the legislature does not become excessively large. We must see to it that the 
proportionality does not lead to excessive fragmentation of the legislature. We must ensure 
that the parties do not game the system in any way, and it remains fair to large and small 
parties alike. Moreover, we must not make the voter confused; it must be a system that the 
average voter can easily understand and one that is built on what they are already comfortable 
with. 
Our proposed system does just that. 

Algorithm: 
We assume that all votes cast are valid 
Let c be the total no. of constituencies 
Let p be the total no. of parties participating in the election 
Let so be an array of size p which contains the total no. of seats won by each party overall, 
where all elements have initial value 0 
Let n be a variable with initial value 0 
For k=1 to c 
   Let ts be the total no. of seats in the constituency 
   Let tvc be the total no. of votes cast in the constituency 
   Let vc be an array of size p which contains the total no. of votes received by each party in 
   that constituency 
   threshold=(10/100)*tvc 



   Let sc be an array of size p which contains the total no. of seats won by each party in that 
   constituency, where all elements have initial value 0 
   Let q be an array of size p which contains the respective quotient value for each party, 
   where all elements have initial value 0 
   n=n+ts 
   While ts>0 
      Let maxq be a variable with initial value 0 
      Let now be a variable 
      For i=1 to p 
         If vci>=threshold 
            qi=vci/(2*sci+1) 
            If qi>maxq 
               maxq=qi 
               now=i 
            Endif 
         Endif 
      Endfor 
      scnow=scnow+1 
      sonow=sonow+1 
      ts=ts-1 
   Endwhile 
Endfor 
Let tvo be the total no. votes cast overall 
Let vo be an array of size p which contains the total no. of votes received by each party 
overall 
threshold=(5/100)*tvo 
Let q be an array of size p which contains the respective quotient value for each party, where 
all elements have initial value 0 
topup=(ceil) n/9 
While topup>0 
   Let maxq be a variable with initial value 0 
   Let now be a variable 
   For i=1 to p 
      If voi>=threshold 
         qi=voi/(2*soi+1) 
         If qi>maxq 
            maxq=qi 
            now=i 
         Endif 
      Endif 
   Endfor 
   sonow=sonow+1 
   topup=topup-1 
Endwhile 

  



Features: 
1. It is a proportional electoral system. 
2. It uses a closed party-list system. 
3. It converts single member constituencies into multi member constituencies wherever 

possible. 
4. The size of the multi member constituencies usually varies from 3 to 6. This ensures 

that there is some constituency link albeit a shared one and not an exclusive one. 
5. Seats are distributed at two levels: the constituency level and the top-up level. 
6. Seats are allocated using the Webster/Sainte-Laguë method at both levels. This 

ensures that there is some proportionality achieved at the constituency level. The 
D’Hondt method is not preferred as the proportionality offered by it in a constituency 

with 3 to 6 members is not enough. 
7. Seats are first allocated at the constituency level with the threshold being 10%. 
8. Seats are then allocated at the top-up level with the threshold being 5%. 
9. The top-up seats are there to ensure overall proportionality. There may be a situation 

where a party achieves 7% of the vote in all the constituencies. As such they are not 
going to win any constituency seats. In this situation, the top-up seats prevents a party 
whose support is not geographically concentrated to be penalised for it. 

10. The semi-proportionality achieved at the constituency level ensures that there is no 
need for a large no. of top-up seats to make the overall result proportional. 

11. The ratio of top-up seats to constituency seats under our system is 1:9. In comparison, 
the ratio of list seats to constituency seats under MMP is 1:1 in Germany and 2:3 in 
New Zealand. This means that we don’t need to expand the current sizes of our 

already existing legislatures by much to accommodate this system. 
12. In the election to the national legislature, the top-up seats may be distributed at the 

state level rather than on the overall national result so as to maintain the federal 
structure of the country. 

13. There is no need to change the EVMs to accommodate our proposed electoral system. 
14. From the perspective of a voter, there is almost no change in our electoral system 

when compared to the current FPTP system used in India. Here, voters also cast a 
single vote just as in the FPTP system, the only difference being that the vote is cast 
for a list of candidates of a party rather than a singular candidate of a party. This 
system differs from FPTP in how it translates votes into seats, but an average voter 
need not burden themselves with the calculation that goes behind it. As far as they are 
concerned, they need to vote once for their preferred party list, and that’s what matters 

for this system to work. 
15. Since voters vote only once, there is no space for parties to use decoy lists to game the 

system. 
 
Example: 

1. Theoretical Example :- 
Let there be a constituency that has to elect 5 members. Let the following be the 
election result in that constituency. 

Party Votes Vote % Seats Seat % 
A 8,000 28.57 1 20.00 
B 10,000 35.72 2 40.00 
C 3,000 10.71 1 20.00 
D 2,000 7.14 0 0.00 
E 5,000 17.86 1 20.00 
Total 28,000 100.00 5 100.00 



Since, D has got less than 10% of the vote in the constituency, which is the 
constituency threshold, it is not eligible to win any constituency seats. We allocate the 
constituency seats by the Webster/Sainte-Laguë method. 
For allocating the 1st constituency seat, we calculate the quotient for each of the 
parties that are qualified to get constituency seats. The respective quotient stands at 
 

So, B gets the 1st constituency seat. B now has 1 seat. 
For allocating the 2nd constituency seat, we recalculate the quotient for each of the 
eligible parties. The respective quotient stands at 

Party Quotient 
A 8000 
B 3333.33 
C 3000 
E 5000 

So, A gets the 2nd constituency seat. A now has 1 seat 
For allocating the 3rd constituency seat, we recalculate the quotient for each of the 
eligible parties. The respective quotient stands at 
 

So, E gets the 3rd constituency seat. E now has 1 seat. 
For allocating the 4th constituency seat, we recalculate the quotient for each of the 
eligible parties. The respective quotient stands at 

Party Quotient 
A 2666.67 
B 3333.33 
C 3000 
E 1666.67 

So, B gets the 4th constituency seat. B now has 2 seats. 
For allocating the 5th constituency seat, we recalculate the quotient for each of the 
eligible parties. The respective quotient stands at 

Party Quotient 
A 2666.67 
B 2000 
C 3000 
E 1666.67 

So, C gets the 5th constituency seat. C now has 1 seat. 
Thus, all the seats for that particular constituency have been distributed. 
Let there be 10 such 5-member constituencies. Therefore, total no. of constituency 
seats will be 50. Let us assume that voters would vote in the same manner as above in 
all the constituencies. The total no. of top-up seats will be (50/9=5.56=)6. The 
following would be the overall result of the election. 
 

Party Quotient 
A 8000 
B 10000 
C 3000 
E 5000 

Party Quotient 
A 2666.67 
B 3333.33 
C 3000 
E 5000 



Party Votes Vote % 
Constituency 

Seats 
Top-up 
Seats Total Seats Seat % 

A 80,000 28.57 10 3 13 23.21 
B 1,00,000 35.72 20 0 20 35.71 
C 30,000 10.71 10 0 10 17.86 
D 20,000 7.14 0 3 3 5.36 
E 50,000 17.86 10 0 10 17.86 
Total 2,80,000 100.00 50 6 56 100.00 

Since no party has got less than 5% of the vote, which is the top-up threshold, all 
parties are eligible to win top-up seats. We allocate the top-up seats by the 
Webster/Sainte-Laguë method. 
For allocating the 1st top-up seat, we calculate the quotient for each of the parties. The 
respective quotient stands at 
 

So, D gets the 1st top-up seat. D now has 1 seat. 
For allocating the 2nd top-up seat, we recalculate the quotient for each of the parties. 
The respective quotient stands at 
 

So, D gets the 2nd top-up seat. D now has 2 seats. 
For allocating the 3rd top-up seat, we recalculate the quotient for each of the parties. 
The respective quotient stands at 
 

So, D gets the 3rd top-up seat. D now has 3 seats. 
For allocating the 4th top-up seat, we recalculate the quotient for each of the parties. 
The respective quotient stands at 
 

So, A gets the 4th top-up seat. A now has 11 seats. 
For allocating the 5th top-up seat, we recalculate the quotient for each of the parties. 
The respective quotient stands at 

Party Quotient 
A 3809.52 
B 2439.02 
C 1428.57 
D 20000 
E 2380.95 

Party Quotient 
A 3809.52 
B 2439.02 
C 1428.57 
D 6666.67 
E 2380.95 

Party Quotient 
A 3809.52 
B 2439.02 
C 1428.57 
D 4000 
E 2380.95 

Party Quotient 
A 3809.52 
B 2439.02 
C 1428.57 
D 2857.14 
E 2380.95 



 

So, A gets the 5th top-up seat. A now has 12 seats. 
For allocating the 6th top-up seat, we recalculate the quotient for each of the parties. 
The respective quotient stands at 
 

So, A gets the 6th top-up seat. A now has 13 seats. 
We see that C has got disproportionately more seats, which has happened at the 
expense of A and D, otherwise the result has been proportional. This is due to the 
beneficial seat share of C at the constituency level, which has been exacerbated due to 
our assumption that voters vote in the exact same way in all the constituencies. This 
might be possible in the real world too, but is quite improbable. 
 

2. Real World Example :- 
We conduct the 2022 Punjab legislative election according to our proposed system. 
We assume that voters would vote in the exact same manner in which they voted in 
the actual election. 
There are 117 constituency seats. So, the no. of top-up seats will be (117/9=)13. So, 
the total no. of seats will be increased to 130. 
We need to convert the single member constituencies into multi member 
constituencies. The following is the result of the conversion. 

District 
Single Member 
Constituency 

Winner acc. to 
FPTP System 

Multi Member 
Constituency 

Winners acc. to 
Proposed System 

Pathankot 
Sujanpur INC 

Pathankot 
3 members 

INC = 1 
NDA = 1 
AAP = 1 

Bhoa AAP 
Pathankot NDA 

Gurdaspur 

Gurdaspur INC 
Gurdaspur I 
4 members 

INC = 2 
AAP = 1 
SAD+ = 1 

Dina Nagar INC 
Qadian INC 
Batala AAP 
Sri Hargobindpur AAP 

Gurdaspur II 
3 members 

SAD+ = 1 
INC = 1 
AAP = 1 

Fatehgarh Churian INC 
Dera Baba Nanak INC 

  

Party Quotient 
A 3478.26 
B 2439.02 
C 1428.57 
D 2857.14 
E 2380.95 

Party Quotient 
A 3200 
B 2439.02 
C 1428.57 
D 2857.14 
E 2380.95 



Amritsar 

Ajnala AAP 

Amritsar I 
5 members 

AAP = 2 
SAD+ = 2 
INC = 1 

Rajasansi INC 
Majitha SAD+ 
Jandiala AAP 
Amritsar North AAP 
Amritsar West AAP 

Amritsar II 
5 members 

AAP = 3 
INC = 1 
SAD+ = 1 

Amritsar Central AAP 
Amritsar East AAP 
Amritsar South AAP 
Attari AAP 

Tarn Taran 

Tarn Taran AAP 
Tarn Taran 
4 members 

AAP = 2 
SAD+ = 1 
INC = 1 

Khem Karan AAP 
Patti AAP 
Khadoor Sahib AAP 

Amritsar Baba Bakala AAP 
Amritsar III 
1 member 

AAP = 1 

Kapurthala 

Bholath INC 
Kapurthala 
4 members 

INC = 2 
AAP = 1 
SAD+ = 1 

Kapurthala INC 
Sultanpur Lodhi Others 
Phagwara INC 

Jalandhar 

Phillaur INC 

Jalandhar I 
5 members 

INC = 2 
AAP = 2 
SAD+ = 1 

Nakodar AAP 
Shahkot INC 
Kartarpur AAP 
Jalandhar West AAP 
Jalandhar Central AAP 

Jalandhar II 
4 members 

INC = 1 
AAP = 1 
NDA = 1 
SAD+ = 1 

Jalandhar North INC 
Jalandhar Cantt. INC 
Adampur INC 

Hoshiarpur 

Mukerian NDA 
Hoshiarpur I 
4 members 

AAP = 1 
INC = 1 
SAD+ = 1 
NDA = 1 

Dasuya AAP 
Urmar AAP 
Sham Chaurasi AAP 
Hoshiarpur AAP 

Hoshiarpur II 
3 members 

AAP = 1 
INC = 1 
SAD+ = 1 

Chabbewal INC 
Garshankar AAP 

S.B.S. Nagar 
Banga SAD+ 

S.B.S. Nagar 
3 members 

SAD+ = 1 
AAP = 1 
INC =1 

Nawan Shehr SAD+ 
Balachaur AAP 

Rupnagar 
Anandpur Sahib AAP 

Rupnagar 
3 members 

AAP = 2 
INC = 1 

Rupnagar AAP 
Chamkaur Sahib AAP 

S.A.S. Nagar 
Kharar AAP S.A.S. Nagar I 

2 members 
AAP = 1 
INC = 1 S.A.S. Nagar AAP 

Fatehgarh Sahib 
Bassi Pathana AAP 

Fatehgarh Sahib 
3 members 

AAP = 2 
INC = 1 

Fatehgarh Sahib AAP 
Amloh AAP 

  



Ludhiana 

Khanna AAP 

Ludhiana I 
5 members 

AAP = 3 
INC = 1 
SAD+ = 1 

Samrala AAP 
Sahnewal AAP 
Ludhiana East AAP 
Ludhiana South AAP 
Atam Nagar AAP 

Ludhiana II 
4 members 

AAP = 2 
INC = 1 
NDA = 1 

Ludhiana Central AAP 
Ludhiana West AAP 
Ludhiana North AAP 
Gill AAP 

Ludhiana III 
5 members 

AAP = 3 
INC = 1 
SAD+ = 1 

Payal AAP 
Dakha SAD+ 
Raikot AAP 
Jagraon AAP 

Moga 

Nihal Singhwala AAP 
Moga 
4 members 

AAP = 2 
SAD+ =1 
INC = 1 

Bhagha Purana AAP 
Moga AAP 
Dharamkot AAP 

Firozpur 

Zira AAP 
Firozpur 
4 members 

AAP = 2 
SAD+ = 1 
INC= 1 

Firozpur City AAP 
Firozpur Rural AAP 
Guru Har Sahai AAP 

Fazilka 

Jalalabad AAP 
Fazilka 
4 members 

AAP = 1 
INC = 1 
SAD+ = 1 
NDA = 1 

Fazilka AAP 
Abohar INC 
Ballauna AAP 

Sri Muktsar Sahib 

Lambi AAP 
Sri Muktsar Sahib 
4 members 

AAP = 2 
SAD+ = 1 
INC = 1 

Gidderbaha INC 
Malout AAP 
Muktsar AAP 

Faridkot 
Faridkot AAP 

Faridkot 
3 members 

AAP = 1 
SAD+ = 1 
INC = 1 

Kotkapura AAP 
Jaitu AAP 

Bathinda 

Rampura Phul AAP 

Bathinda 
6 members 

AAP = 3 
SAD+ = 2 
INC = 1 

Bhucho Mandi AAP 
Bathinda Urban AAP 
Bathinda Rural AAP 
Talwandi Sabo AAP 
Maur AAP 

Mansa 
Mansa AAP 

Mansa 
3 members 

AAP = 1 
SAD+ = 1 
INC = 1 

Sardulgarh AAP 
Budhlada AAP 

  



Sangrur 

Lehra AAP 
Sangrur I 
4 members 

AAP = 2 
SAD+ = 1 
INC = 1 

Dirba AAP 
Sunam AAP 
Bhadaur AAP 
Barnala AAP 

Sangrur II 
3 members 

AAP = 2 
INC = 1 

Mehal Kalan AAP 
Malerkotla AAP 

Barnala 
Amargarh AAP 

Barnala 
3 members 

AAP = 2 
INC = 1 

Dhuri AAP 
Sangrur AAP 

Patiala 
Nabha AAP 

Patiala I 
3 members 

AAP = 2 
INC = 1 

Patiala Rural AAP 
Rajpura AAP 

S.A.S. Nagar Dera Bassi AAP 
S.A.S. Nagar II 
1 member 

AAP = 1 

Patiala 

Ghanaur AAP 

Patiala II 
5 members 

AAP = 3 
SAD+ = 1 
INC = 1 

Sanour AAP 
Patiala AAP 
Samana AAP 
Shutrana AAP 

Thus, we have converted 117 single member constituencies into 32 multi member 
constituencies consisting of a total of 117 seats. 

The overall result of the election under our proposed system would be as follows. 

Party Votes Vote % Constituency 
Seats 

Top-up 
Seats 

Total 
Seats 

Seat % 

AAP 65,38,783 42.01 55 3 58 44.62 
INC 35,76,684 22.98 33 0 33 25.38 
SAD+ 31,36,518 20.15 24 4 28 21.54 
NDA 12,03,835 7.74 5 6 11 8.46 
Others 9,97,592 6.41 0 0 0 0.00 
NOTA 1,10,320 0.71 0 0 0 0.00 

Total 1,55,63,732 100.00 117 13 130 100.00 
 

 

Votes

AAP

INC

SAD+

NDA
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Seats
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NDA



Gallagher Index: 
Party Vote % Seat % Difference Difference Squared 

AAP 42.01 44.62 -2.61 6.8121 
INC 22.98 25.38 -2.4 5.76 
SAD+ 20.15 21.54 -1.39 1.9321 
NDA 7.74 8.46 -0.72 0.5184 
Others 6.41 0.00 6.41 41.0881 
NOTA 0.71 0.00 0.71 0.5041 

Total 56.6148 
Total/2 28.3074 

Square Root of (Total/2) 5.32 
The Gallagher index is reduced from 29.55 in FPTP system to 5.32 in our proposed system. 

Effective No. of Parties: 

Party Seats(s) (𝒔 ∑ 𝒔⁄ )𝟐 

AAP 58 0.1990532544 
INC 33 0.0644378698 
SAD+ 28 0.0463905325 
NDA 11 0.0071597633 
Total(∑) 130 0.31704 

𝟏
∑(𝒔 ∑ 𝒔⁄ )

𝟐⁄  3.15 

The effective no. of parties increases from 1.55 in FPTP system to 3.15 in our proposed 
system. 

IX.   RESULT 

Electoral 
System Type Preferential List Threshold 

List 
Allocation 

Method 

Gallagher 
Index ENP 

FPTP Majoritarian No - - - High Normal 
Two Round Majoritarian No - - - High Normal 
IRV Majoritarian Yes - - - High Normal 
Party-List Proportional No Open 0.67% D’Hondt Low Excessive 

MMP Proportional No Closed 5% 
Webster/Sainte
-Laguë 

Low Normal 

Parallel 
Voting 

Semi-
proportional 

No Closed None D’Hondt Medium Normal 

Proposed 
System 

Proportional No Closed 
10% 
(constituency) 
5% (top-up) 

Webster/Sainte
-Laguë 

Low Normal 

 
  



X.   DISCUSSION 

The main task for a proportional electoral system is to find the perfect balance between 
proportionality and fragmentation. Exclusively prioritising on increasing proportionality 
might lead to excessive fragmentation, while exclusively prioritising on reducing 
fragmentation might make the system not proportional at all. Our proposed electoral system 
is able to do so with help of a sizable but not insurmountable threshold. And, overall, it is 
able to maintain the fairness that is the essential feature of all proportional systems. 

XI.   CONCLUSION 

Different electoral systems serve different purposes. Majoritarian systems provide clear 
winners and losers and often result in single majority governments, but fail to fairly express 
the choice of the electorate. Proportional systems, on the other hand, are quite adept at 
representing all the different choices of the electorate fairly, but if the threshold is too low it 
might lead to excessive fragmentation. Semi-proportional systems are supposed to be the 
middle ground between the two, yet it still favours the big establishment parties over small or 
new ones, thus making it unfair. 

Not all systems might be compatible with India. Some systems, no matter how theoretically 
perfect they might be, are just not suitable to be implemented in a country as large and 
diverse as India. Thus, taking into consideration all the factors, our proposed system performs 
quite well. It offers proportionality without excessive fragmentation. It retains constituencies 
albeit of a larger district magnitude than the current system. And, most importantly, it retains 
the basic framework of how the votes are cast as compared to the current system in India. As 
far as voting is concerned, there is no need for any change in that department if we are to 
replace the current FPTP system with our proposed electoral system. An average voter who 
has voted before in Indian elections if told to cast a vote in our proposed system can do so 
without any confusion or hesitation. 

If at all our system is to be implemented in India, we recommend to first try it out at the state 
level. Start with a state, then gradually extend it to other states, and finally implement it in all 
the states. Only after that should the system be used for electing the national legislature. 

XII.   FUTURE WORK 

The formulation of new electoral systems and the improvement of existing systems is a never 
ending process. Although, the discussion on electoral system is not a popular issue and 
neither is there any popular demand for electoral reform, other than the odd article from ex 
election commissioners and other intellectuals, it is only time that the electorate gets wary of 
the inherent unfairness of the current FPTP system. As such, this issue is kind of a dormant 
volcano. Already, there has been parliamentary committees that are being set up to check the 
viability of the FPTP system in our diverse democracy. It should be expected that the issue of 
electoral reform is only going to get more important in the near future. 
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XIV. APPENDIX 

CODE: 

FPTP 

 

#Let us consider a single constituency.  

#Let n be the total no. of candidates participating in the constituency 

#Let arr be an array of size n which contains the total no. of votes received by each candidate 

def FPTP(n,arr): 

max=0 

winner=0 

for i in range(n): 

if arr[i]>max: 

max=arr[i] 

winner=I 

return winner 

 

 

def main(): 

n=eval(input("Enter the number of candiates: ")) 

arr=[] 

for i in range(n): 

vote=eval(input(f"Enter the number of votes, candiate {i+1} get: ")) 

arr.append(vote) 

winner=FPTP(n,arr) 

parcentage=(arr[winner]/sum(arr))*100 

print(f"The {winner+1}th candidate is the winner of the constituency with {parcentage}% vote 

share.") 

 

if __name__ == "__main__": 

main() 

 

Two Round System 

 

#Let consider just one constituency 

#Let n be the total no. of eligible voters in the constituency 

#Let m be the total no. of votes cast. 

#Let x be the total no. of candidates participating in the constituency 

#Let arr1 be an array of size x which contains the total no. of votes received by each candidate 

 

def TRS(x,m,n,arr): 

q=0 

eligible_for_2nd=[] 

for i in range(x): 



if ((arr[i]>((1/2)*m)) and (arr[i]>=((1/4)*n))): 

print(f"The winner is {i+1}th candidate.") 

return eligible_for_2nd 

elif(arr[i]>=((1/8)*n)): 

q=q+1 

eligible_for_2nd.append(i) 

 

if(q>=2): 

print(f"Hold second round of elections where only {q} candidate will participate and the rest are 

eliminated.") 

return eligible_for_2nd 

else: 

if(len(eligible_for_2nd))!=0: 

eligible_for_2nd.pop(0) 

max=0 

max_2=0 

max_c=0 

max_2_c=0 

for i in range(x): 

if(max<arr[I]): 

max_c=I 

max=arr[i] 

eligible_for_2nd.append(max_c) 

for i in range(x): 

if(arr[i]==max): 

continue 

elif(max_2<arr[i]): 

max_2_c=I 

max_2=arr[i] 

eligible_for_2nd.append(max_2_c) 

return eligible_for_2nd 

 

 

 

def main(): 

x=eval(input("Enter the number of candiates: ")) 

n=eval(input("Enter the total no. of eligible voters in the constituency: ")) 

arr=[] 

for i in range(x): 

vote=eval(input(f"Enter the number of votes, candiate {i+1} get: ")) 

arr.append(vote) 

m=sum(arr) 

winner=TRS(x,m,n,arr) 

if(len(winner)!=0): 

print("The candidates who are eligible for 2nd round are: ") 



for i in winner:  

print(i+1,end=',') 

 

if __name__ == "__main__": 

main() 

 

 

MMPS 

 

import csv 

#Let es be the total no. of electorate seats 

#Let ls be the total no. of list seats 

#Let x be the total no. of parties contesting the election 

#Let p be an array of size x which contains the total no. of seats won by each party, where all 

elements have initial value 0 

 

def MMPS(data,es,ls,x): 

total_seat=es+ls 

total_party_vote=0 

for i in range(x): 

total_party_vote=total_party_vote+eval(data[i][2]) 

threshold=(5/100)*total_party_vote 

result=[] 

result.append(["Party","Party Vote%","List Seats","Total Seats", "Seat %"]) 

for i in range(x): 

row=[] 

row.append(data[i][0]) 

row.append(round(eval(data[i][2])/total_party_vote*100,2)) 

row.append(0) 

row.append(eval(data[i][1])) 

row.append(0) 

result.append(row) 

 

#Let q be an array of size x which contains the respective quotient value for each party, where all 

elements have initial value 0 

q=[0]*x 

while ls>0: 

max_q =0 

now=0 

for i in range(x): 

if (eval(data[i][1])!=0 or eval(data[i][2])>threshold): 

q[i]=eval(data[i][2])/(2*(result[i+1][3])+1) 

if q[i]>max_q: 

max_q=q[I] 

now=I  



result[now+1][3]=result[now+1][3]+1 

ls=ls-1 

for i in range(x): 

result[i+1][2]=result[i+1][3]-eval(data[i][1]) 

result[i+1][4]=round(result[i+1][3]/total_seat*100,2) 

 

return result 

 

def main():  

vote=[] 

es=eval(input("Enter the total no. of electorate seats: ")) 

ls=eval(input("Enter the total no. of list seats: ")) 

x=eval(input("Enter the total no. of parties contesting the election: ")) 

with open('Doc_MMPS.csv', 'r') as file: 

data = csv.reader(file) 

for row in data: 

vote.append(row) 

vote.pop(len(vote)-1) 

vote.pop(0) 

#print(vote) 

result=MMPS(vote,es,ls,x) 

for i in range(x+1): 

print(result[I]) 

 

if __name__ == "__main__": 

main() 

 

IRVS 

 

import math  

import csv 

#Let n be the total no. of candidates participating in the constituency 

#Let x be the total no. of votes cast 

#Let IRVS.csv is a csv file which contains the ballot details of each vote 

#Let candidte be an dictionary of size n which contains the total no. of votes received by each 

candidate 

 

def modify(table,key,n): 

#This function modify the data extracted from the csv file as one candidate rulled out 

for i in range(len(table)): 

for j in range(n): 

if table[i][j]==key: 

table[i][j]="Null" 

return table 

 



def search(table,i): 

#This Functon finds the nxt valid preferance 

j=2 

while(table[i][j]=="Null"): 

j+=1 

return table[i][j] 

 

def IRVS(vote,x,n,candidate): 

for i in range(x): 

z=vote[i][0] 

candidate[z]=candidate[z]+1  

 

flag=0 

 

while(flag!=1): 

max_c=0 

min_c=0 

max=0; 

min=math.inf 

for i in candidate: 

if max<candidate[I]: 

max=candidate[I] 

max_c=I 

if min>candidate[I]: 

min=candidate[I] 

min_c=I 

if(max>=(.5*x)): 

flag=1 

else: 

#mincth candidate is eliminated and their voters next preferences are checked and subsequently 

distributed 

 

for i in range(x):  

if vote[i][0]==min_c: 

z=vote[i][1] 

if(z=="Null"): 

z=search(vote,i) 

candidate[z]=candidate[z]+1 

else: 

candidate[z]=candidate[z]+1 

vote=modify(vote,min_c,n) 

candidate.pop(min_c) 

 

return max_c 

 



def main():  

vote=[] 

with open('IRVS.csv', 'r') as file: 

data = csv.reader(file) 

for row in data: 

vote.append(row) 

 

candidate = {'Bob':0,'Sue':0,'Bill':0,'Matt':0} 

x=8 

n=4 

winner=IRVS(vote,x,n,candidate) 

print(f"The winner is {winner}.") 

 

if __name__ == "__main__": 

main() 

 

 

 

Parallel Voting System  

 

#Let x be the total no. of seats in the constituency 

 

#Let n be the total no. of parties participating in the constituency 

 

#Let v2 be an array of size n which contains the total no. of votes received by each party 

 

def PVS(x,n,v2): 

p=[0]*n 

#Let p be an array of size n which contains the total no. of seats won by each party, where all 

elements have initial value 0 

q=[0]*n 

#Let q be an array of size n which contains the respective quotient value for each party, where all 

elements have initialvalue 0 

while x>0: 

maxq = 0 

now = 0 

#Let now be a variable 

for i in range(n):  

q[i]=v2[i]/(p[i]+1)  

if q[i]>maxq:  

maxq=q[I] 

now=I 

p[now]=p[now]+1 

x=x-1 

return p 



def main(): 

 

x=24 

n=5 

v2=[8000, 6000, 4800, 800, 400] 

""" 

x=176 

n=8 

v2=[19914883, 11492095, 8050830, 7114282, 4166076, 2593396, 2215648, 1918769] 

""" 

result=PVS(x,n,v2) 

print(result) 

mmc=eval(input("Enter the value of mmc: ")) 

for i in range(mmc): 

x=eval(input(f"Enter the number of seats in mmc{i+1}: ")) 

n=eval(input(f"Enter the number of parties participated in the mmc{i+1}: ")) 

v2=[] 

for i in range(n): 

vote=eval(input(f"Enter the number og votes party {i+1} gets: ")) 

v2.append(vote) 

result=PVS(x,n,v2) 

print(result) 

if __name__ == "__main__": 

main() 

 

Party List Proportional System 

 

#We assume that all votes cast are valid 

#Let n be the total no. of seats 

#Let tv be the total no. of votes cast 

#Let x be the total no. of parties participating in the election 

#Let s be an array of size x which contains the total no. of seats won by each party, where all 

elements have initial value 0 

#Let v be an array of size x which contains the total no. of votes received by each party 

#Let c be the total no. of candidates in each party that are participating in the election 

#Let p be a two dimensional array of size x,c which contains the total no. of votes received by each 

individual candidate of the respective party 

 

def PLPS(n,x,v,c,p): 

tv=sum(v) 

s=[0]*x 

threshold=tv/n 

rem=n 

for i in range(x): 

if v[i] >= threshold: 



s[i]=floor(v[i]/threshold)  

rem=rem-s[I] 

 

#Let q be an array of size x which contains the respective quotient value for each party, where all 

elements have initial value 0 

q=[0]*x 

while rem>0: 

#Let maxq be a variable with initial value 0 

maxq=0 

#Let now be a variable 

now=0 

for i in range(x): 

if v[i]>=threshold: 

q[i]=v[i]/(s[i]+1) 

if q[i]>maxq:  

maxq=q[I] 

now=I 

s[now]=s[now]+1  

rem=rem-1 

elected=[[0]*x]*c 

for i in range(x): 

if s[i]>0: 

fillseat=0 

for j in range(c): 

while fillseat<s[I]: 

if p[i][j]>=(threshold/4): 

elected[i][j]=1 

fillseat=fillseat+1 

if fillseat<s[I]: 

for j in range(c): 

while fillseat<s[I]: 

if elected[i][j]==1: 

continue  

else: 

elected[i][j]=1 

fillseat=fillseat+1 

 

Proposed System 

 

import math 

 

 

def prop(c,p,TS,TVC,VC,VO): 

#Let c be the total no. of constituencies 

#Let p be the total no. of parties participating in the election  



#Let so be an array of size p which contains the total no. of seats won by each party overall, where 

all elements have initial value 0  

so=[0]*p 

#Let n be a variable with initial value 0 

n=0 

for k in range(c): 

#Let ts be the total no. of seats in the constituency 

ts=TS[k] 

#Let tvc be the total no. of votes cast in the constituency 

tvc=TVC[k] 

#Let vc be an array of size p which contains the total no. of votes received by each party in that 

constituency 

vc=VC[k] 

threshold=(10/100)*tvc 

#Let sc be an array of size p which contains the total no. of seats won by each party in that 

constituency, where all elements have initial value 0 

sc=[0]*p 

#Let q be an array of size p which contains the respective quotient value for each party, where all 

elements have initial value 0 

q=[0]*p 

n=n+ts 

while ts>0: 

#Let maxq be a variable with initial value 0 

maxq=0 

#Let now be a variable 

now=0 

for i in range(p): 

if vc[i]>=threshold: 

q[i]=vc[i]/(2*sc[i]+1)  

if q[i]>maxq: 

maxq=q[I] 

now=I 

sc[now]=sc[now]+1  

so[now]=so[now]+1  

ts=ts-1 

 

 

#Let tvo be the total no. votes cast overall 

tvo=sum(TVC) 

#Let VO be an array of size p which contains the total no. of votes received by each party overall 

threshold=(5/100)*tvo 

#Let q be an array of size p which contains the respective quotient value for each party, where all 

elements have initial value 0 

q=[0]*p 

topup= math.ceil(n/9) 



while topup>0: 

#Let maxq be a variable with initial value 0 

maxq=0 

#Let now be a variable 

now=0 

for i in range(p): 

if (VO[i]>=threshold):  

q[i]=VO[i]/(2*so[i]+1)  

if q[i]>maxq: 

maxq=q[I] 

now=I  

 

so[now]=so[now]+1 

topup=topup-1 

return so 

 

def main(): 

c=10 

p=5 

TS=[5]*10 

TVC=[28000]*10 

VC=[[8000,10000,3000,2000,5000]]*10 

VO=[80000,100000,30000,20000,50000] 

print(prop(c,p,TS,TVC,VC,VO)) 

 

if __name__=="__main__": 

main() 
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PROBLEM DESCRIPTION 
 

Reversible Data Hiding refers to the process of extracting host media from marked media 

without causing any distortion to the host media. It is essential, especially in circumstances 

where even minimal distortion to the host media is unacceptable as it may lead to incorrect 

analysis. In this context, we have proposed a novel method for reversible data hiding in medical 

images which is based on embedding in hybrid domain. The methodology involves, dividing 

the host image in various sub-samples. A 13-7 Transform is applied on the sub-sampled images 

to select the appropriate frequency bands for embedding the sensitive information. A thorough 

comparison with some of the traditional algorithms in terms of Peak Signal to Noise Ratio is 

present. Experimental data suggests that our method exceeds the existing methodologies both 

in terms of payload and distortion post embedding 
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CHAPTER 1: INTRODUCTION 
 

1.1) Steganography:  

 

Steganography is the technique of hiding data in different types of cover media like 

text, audio, image, video etc. Image steganography uses digital images as cover media 

and after embedding our secret information, or better known as the load, stego image 

is produced. To hide load data either cover image pixels are directly modified with 

secret data or the image pixels are first transformed using different transform domain 

techniques and then the resulting coefficients are utilized to store secret information.  

 

The word ‘Steganography’ is derived from an amalgamation of two Greek words: 

‘Steganos’ and ‘Graphiya’. Steganos means covered and graphiya mean writing so the 

word steganography when derived from Greek mean covered writing or hidden writing. 

 

Exploring the past we can see references of this concept even in ancient history as well. 

Herodotus is a famous ancient Greek historian in 441 B.C. mentions few examples of 

this modern day hidden writing technique, i.e., steganography in his work of histories. 

When king Histiaeus shaved the head of his most trusted servant and marked the secret 

message on his scalp and sending him to the receiver of the message once his hairs was 

grown. This is even one of the most important application of steganography for 

espionage or secret information passing.  

 

This leads us to look at steganography as a better alternative to cryptography where we 

send an encrypted message using a key and the transmitted sequence of characters is 

used to get the hidden message. But the problem here stays that if this encrypted 

message gets intercepted then the hidden message may also be compromised, but in 

case of steganography it is very tough to identify and distinguish a stego image from a 

cover image therefore increasing the secrecy and privacy while transmitting the 

information. 
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1.1.1) Basic Model of Steganography:  

Message embedding and stego image preparation outline:- 

 

 
Fig. 1 

 

 
Message extraction outline: 
 

 
Fig. 2 

 

1.1.2) Reversible data hiding: 

 

The embedded image when received is processed and the hidden information, known 

as the load, is extracted as shown in fig. 2. Generally, at the destination end the load is 

extracted from the stego image. The most important concern at that point is the perfect 

reconstruction of the load but the recovery of the cover image is not of much concern. 

If a case is taken where we are not only concerned with the reconstruction of the load, 

that is the hidden data, but also the perfect reversal of the stego image to cover image 
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after extraction. Then this is known as reversible image steganography or Reversible 

Data Hiding (RDH).  

If we denote this pictorially : 

 

 
Fig. 3 

So, we can see here from fig.1, fig.2 and fig. 3 the difference between reversible data 

hiding (reversible image steganography) and normal image steganography. 

 

1.1.3) Scope of RDH: 

 

The scope of field of application and the immense importance of this method is huge in 

real world. Reversible data hiding is a emerging to be very important in the field of 

Defence, where we need to send some hidden data along with a image, then many times 

the complete reversal of the cover image is required, here RDH plays a huge role. RDH 

is also emerging to be very important in the case for tele-medicine. EPR (electronic 

patient record), is sometimes needed to be transferred along with medical images such 

as MRI, or CAT-scan, or else. Since it is a patient’s medical record it needs to be secret, 

so steganography is used for this, but RDH is used here as we must get our cover image 

which is the MRI or any other medical image for diagnosis. The paper covers and 

explores this particular domain, i.e., the use of reversible data hiding in tele-medicine, 

or medical images.  
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1.1.4) Types of Image steganography 

Image steganaographic methods can be broadly classified in two : 

 

1.1.5.1) Spatial Domain Steganography: Here in this method of steganography the bits 

from the bit string of the secret data is directly embedded in the pixels of the image 

itself. Papers [9][11][12] have put forward their novel method for RDH using the spatial 

domain and more about their works have been discussed in the next section of related 

works which will help understand this method better and further. 

 

Some popular spatial domain techniques are:-  

 LSB (Least Significant Bit) substitution 

 PVD (Pixel Value Differenting) 

 Difference Image Histogram (DIH) 

 

1.1.5.2) Transform Domain Method: In this method the image is first taken into their 

transform domain and then the frequencies are changed to embed the secret data, i.e., 

the load.  

 

 
Fig. 4 

 
Fig. 5 
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1.1.5) Performance metrices for image steganography: 

 

There are some methods and metrices used to evaluate the quality of image 

steganography. The methods that we will be discussing will all be assessing a different 

aspect of the results obtained after embedding and extraction. 

 

1.1.5.1) Payload Capacity: 

              This refers to the volume of the load that has been embedded into the cover 

image. It is measured in BPP, Bits Per Pixel. Where  

 

BPP = (Number of Bits embedded/Total number of pixels) 

 

1.1.5.2) Mean Square Error: 

    MSE is the average of the square of the pixel by pixel difference between the 

pixels of the stego image and the cover image after embedding. 

 

𝑀𝑆𝐸 =  (𝑚𝑥𝑛) [𝐼(𝑖, 𝑗) −𝑘(𝑖, 𝑗)]  

 

Lower values of Mean Square Error denotes a good quality embedding 

 

1.1.5.3) Peak Signal To Noise Ratio (PSNR) : 

It is the ratio between the maximum possible value of a signal (pixel in case of 

image referred as MAX) and the power of distorting noise (MSE). 

 
 

𝑃𝑆𝑁𝑅 = 10 ∗ 𝑙𝑜𝑔 ( 𝑀𝐴𝑋 /𝑀𝑆𝐸) 
 
 

High values of PSNR denotes that the steganography is good. 
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1.1.5.4) Structured Similarity Index Measurement (SSIM):  

 

SSIM is a metric of comparison to check the similarity between the cover image 

and stego-image. It measures the perceptual difference between the two images. 

 

1.1.6) DICOM images: 

 

[1] Medical images are unlike normal 8-bit grayscale images or JPEG colour images. 

Medical images are in the Digital Imaging and Communication on Medicine, DICOM 

format. Where a normal 8-bit grayscale image has it’s pixel value range in 0 to 255, 

grayscale DICOM images in 12-bit format has pixel values in range 0 to 4095 and in 

range 0 to 65535 in 16-bit format. 

 

 

1.2) Wavelet Transform : 

 

Wavelet transforms are used to transform images from spatial domain to transform 

domain. Unlike Spatial domain embedding techniques, where data is embedded by 

modifying the intensity levels directly, in transform domain-based data hiding 

techniques, data is hidden in the in the transform coefficients. Thus, these algorithms 

provide higher robustness as compared to spatial domain based embedding techniques. 

Also, this transformation support reversibility, which becomes crucial in reversible 

image steganography. But the notable transformation methods such as DCT (Discrete 

Cosine Transform) and DWT (Discrete Wavelet Transform) cannot be used for this 

purpose. These methods require floating point calculations which leads to higher 

computational complexity. Apart from that, there is chance of loss of information 

especially during extraction of data.  

 

To avoid such inconvenience, Integer to Integer Wavelet Transforms are used. These 

are derived from linear wavelet functions which support invertibility without any loss 

of data. Also, the lack of floating-point calculation make these computationally simple. 

Integer wavelet Transform divide the image in four sub bands LL, LH,  HL,HH. LL 

refer to the approximate coefficient of the image, HL and LH are the horizontal and 

vertical coefficients respectively and HH represents the diagonal detailed feature of the 
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image. in order to transform 2D image, we need to implement the transformation twice, 

once along the rows and once along the columns. 

 

 
Fig.6 
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CHAPTER 2: RELATED WORKS 
 

Parah et. Al. [2] proposes a novel method for reversible medical image steganography in their 

paper. At first, each pixel of the original image is transformed into a block of 2x2 block. This 

up-sampling is performed in order to ensure reversibility. To add to the security of the model 

the information is encrypted using non-linear dynamics of chaos. Along with the data, a fragile 

watermark is used to ensure authenticity of the content. Beside all of these, checksum for each 

block is calculated and embedded to detect any tampers in the stego image and also for 

localization. The data is embedded using LSB method. A seed or pivoted element is left in each 

block to ensure reversibility of the original image. The embedding is done in rest of the pixels 

of the block. At the extraction step, the data is first recovered followed by the original image. 

The checksum is used to detect the integrity of the original images, while the watermark is used 

to check the integrity of the information. 

 

Patel et. Al. proposes a novel method for reversible medical image steganography in [3] this 

paper. The author proposes a cloud storage-based algorithm to enhance security and 

management. Four cloud services are required which stores patient number, X-ray image, 

patient number, pathological report, patient number, key, patient number, Stego image. While 

to maintain reversibility, the concept of Region of Interest and Region of Non-Interest. In this 

method, the information is embedded in the carrier image by using LSB steganography. The 

medical image and patient’s information are stored in two different clouds to enhance security. 

The proposed scheme can be subdivided mainly into four stages. The first part is Segmentation, 

where the medical image is divided into four RONI and one ROI. This process involves 

separation the foreground and background using edge detection. Using the information of 

RONIs, a secret key is generated. This key is of the form of a 4x4 matrix which is obtained by 

using gray-thresholding. This key contains the starting coordinates of four RONIs and is stored 

in another cloud. Following this, the RONI regions undergo a pixel value reduction. The 

threshold value of each RONI is calculated and each bit is processed with respect to the 

threshold value. Finally the information is embedded in this modified carrier image using LSB 

steganography. The de stego process can retrieve the patient information as well as the sensitive 

information of the carrier image. In this method it is observes that the PSNR depends 

significantly upon the bits per pixel(bpp). Normally the same image. For an X-ray image PSNR 

value descends from 87 to 60 when bpp is increased gradually from 1 to 4. 
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Mantos and Maglogiannis [4] suggests a novel method for reversible steganography on medical 

images. The authors have used the concept of region of interest and Region of Non-Interest to 

make the embedding process reversible in nature. At the beginning, some of the rows from the 

top and bottom of the medical image are selected as RONI. It is assumed that these regions 

contain no sensitive data and hence tampering will be least detrimental. The size of the RONI 

is determined based on the data to be inserted in that region. This data comprises of start row 

of the ROI, size of the map which is the total number of bits altered in ROI during the 

embedding and the map itself which is a mapping of the altered pixels in ROI. In ROI, the data 

consisting of sensitive medical information, hash of the data (for authentication of embedded 

data), hash ROI (for authentication for ROI), is embedded. The three sets of data are encrypted 

to enhance security. This encrypted data and encryption key are embedded in the ROI. For 

embedding, the LSB matching technique is implemented. In the RONI, two bits are replaced, 

while ROI, single bits are replaced. The algorithm uses a Pseudo Random Sequence Generator 

to determine whether the bit in which is to be embedded in will undergo an increment or 

decrement operation. For the pixels values 0 or 255 cannot be decremented and incremented 

respectively. So a special sequence will be used in the map to represent such situation. In both 

the ROI and RONI, embedding is done by considering two halves. While in the RONI, the 

embedding is straightforward, in the ROI, the embedding occurs by considering the sobel 

operator of each halves. Although the robustness of this procedure is pretty low, the 

imperceptivity of the algorithm is pretty high. Once tested on 10 16-bit grayscale medical 

images (CTs and MRIs) of size 512 × 512 and 2 of size 256 × 256 maintaining an bpp of 0.25, 

the PSNR value ranges approximately between 105-107. 

 

Thiyagarajann and Aghila [5] suggests a novel method for reversible steganography on medical 

images. The authors have used the concept of region of interest and Region of Non-Interest to 

make the embedding process reversible in nature. At the beginning, the Region of Interest 

(ROI) and Region of Non-Interest (RONI) is separated using the Canny Edge Detector. 

Following this, the hash value of the ROI pixels is obtained. These hash values are useful for 

authenticating the integrity of the ROI post extraction of the embedded information. Also, from 

the hash values, a tree graph is generated. This tree graph is solved for 3-coloring problem to 

generate the key. The benefit of key generation through graph coloring procedure is that, it not 

only increases security of the embedding but also the key need not be transmitted as it can be 

generated during the extraction from the hash values. This key is also unique for each image, 

as it is obtained from the hash values. The embedding procedure is done in the RONI region. 
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The hash values are embedded sequentially following an arithmetic progression. The patient 

information however is embedded following the coloring sequence. While pixels 

corresponding to color 0 is not used for embedding, color 1 and color 2 are used for embedding. 

This procedure has an average PSNR value ranging between 68-74 dB. 

 

 

Chandrasekaran and Sevugan [6] proposed a novel method of reversible Data Hiding which is 

primarily focused on medical imagery, i.e., basically aiming at higher payload capacity, least 

distortion and complete reversibility. Authors for this have put forward idea of doing this in 

Hybrid Domain, i.e., using spatial as well as transform domain to hide the secret data and 

recover the original cover image. In the proposed method, authors have used a 2D DWT Haar 

transform for the secret data embedding, and the main part of this novel method which helps 

in reversibility is that the frequency changes that is being done during the embedding of the 

secret data in the transform domain, that information is preserved in the form of Auxiliary Data, 

and then this Auxiliary Data is hidden in the spatial Domain using the Histogram Modification 

Technique. The authors have used the work of Tai et el.[7], for the histogram Modification in 

spatial domain which uses pixel differences of neighboring pixels to construct the histogram 

and Binary tree structure to hold the multiple peak and zero points. Discrete Wavelet transform 

decomposes the image into four sub bands: LL,HL,LH and HH. LL is the approximate 

coefficient of the image. The host image is pre-processed and then the image is taken to 

transform domain using Haar integer to integer transform. In order to ensure better and near 

perfect reversibility of the cover image, the frequencies altered in the transform domain to 

embed the secret data is stored in the form of ‘Auxiliary data’ which will later be used. Now 

inverse haar transform is applied on the embedded image which is in the transform domain to 

bring it to spatial domain as the Intermediate Haar Transform Image(IHI). As the last phase of 

the embedding phase, the auxiliary data is embedded in the spatial domain using the histogram 

modification technique proposed by [7] to obtain the final stego image. In Extraction process, 

histogram recovery is implemented on the stego image to obtain the auxiliary data and then 

integer to integer haar transform is used to get the image in transform domain. Then the 

auxiliary data is used to retrieve the secret data and to tune the image to its original state. To 

retrieve the original image inverse integer to integer haar transform is Implemented to get 

recover the host image losslessly. . The proposed algo used tested using MATLAB and judged 

upon PSNR & SSIM (structural similarity Index). The data set comprised of multiple medical 

sample images like “Hepatitis marked Margo interior images” “Brain marked image” & 
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“Pelvic Cavity images” over various BPP. Comparative analysis of the proposed method with 

previous work(sachnev et al.[8], Wu et al.[9], Gao et al.[10]), showed that the image quality 

drops with increasing payload, and proposed method achieves better PSNR values compared 

to pre-exisiting methods. 

 

 

Ni et al. [11] proposed a novel method of reversible data hiding by using histogram 

modification technique which is primarily focused on least distortion as well as getting the 

cover image in a lossless way after data extraction. The novel algorithm proposes we first make 

a histogram of the given cover image and then scan the histogram for a set of one zero point 

and one peak point. The reason of using maximum point (histogram bin) is that to increase the 

embedding capacity because the number of bits that can be embedded equals the number of 

pixels in the maximum point/bin. The image is scanned in a sequential manner, and all the 

pixels that fall between maximum point+1 and zero point-1, are incremented by 1. Basically, 

the histogram is shifted one space to the right leaving the bin next to maximum value bin empty. 

Now, the image is again scanned in the same sequential manner and if a pixel is of the value 

corresponding to the maximum point is found then, the secret message is looked into bit by bit. 

If the secret message bit is ‘1’ then the pixel value is added with ‘1’, and if the secret message 

bit is ‘0’ then the pixel value is left unchanged. At the end of the process we get a new histogram 

in which the maximum point bin is diminished and now the empty bin is filled. Now for the 

data extraction as well as the original image recovery process is just the reverse of the 

embedding algorithm. At the end of the extraction process we will get a histogram with restored 

maximum point bin and an empty bin at maximum point+1 which was emptied while histogram 

bin shifting with 1 place. The image is scanned again and then all the pixel value between 

maximum point+1 and maximum point-1 are reduced by 1, so as to recover the original 

histogram and in turn get the original image in lossless manner. The algorithm states that the 

same procedure can also be executed with multiple pairs of peak and zero points by storing and 

passing the number of pairs in form of overhead information. 

 

Kim et al. [12] proposes a novel method of Reversible Data Hiding, which modifies the 

difference histogram between different sub-sampled images from the cover image. The method 

proposed exploits the spatial correlation inherent in neighbouring pixels in any image to get its 

desired minimal distortion after embedding information as well as to obtain the original 

unmarked cover image from the marked image after data extraction. The basic idea in this 

paper is to utilize the horizontal, vertical and diagonal neighbours of a pixel since they have 
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strongly spatial correlation and high pixel redundancy. Hence, multiple difference histograms 

are created. To start with, the host image is first sampled into multiple sub-sample images. Two 

sampling factors Δu and Δv, set the desired sub-sampling intervals in the row and column 

direction. The number of sub-sampled images generated after the process will be ( Δu x Δv ) 

and the size of each sub-sampled images is held at M/Δu and N/Δv if original image is at (M x 

N). After obtaining the different sub-sampled images, a reference sub-sampled image is SRef is 

determined to maximize the spatial correlation. SRef is selected as per a detailed algorithm 

mentioned in the paper itself. Now, Difference images are created between the SRef  and rest of 

the sub-sampled images. Now the authors have proposed to prepare Histograms for each of the 

difference image and then histogram shifting is done each of the histogram to prepare empty 

bins which will ultimately hold the Secret data that needs to be embedded. This shifting is done 

according to an embedding level L. Embedding level here means the number of times data will 

be hidden in a single shifted histogram. Histogram ranges between  -255 & 255, but the 

proposed method is mainly focused on the central part as most of the histogram will be 

concentrated in this region owing to the spatial correlation between the neighbouring pixels 

which is being exploited in this method. Now using the shifting mechanism specified as per 

the level the histogram bins are shifted to left as well as right and then message is embedded. 

Taking the message to be binary {0,1}. The modified difference image(after histogram 

shifting) is scanned and once a pixel value of -L or L is encountered, L being the level, then 

the message bit to be encoded is checked and if it is found to be 0 then no changes is done and 

if 1 is encountered then (L+1) is done and (-L-1) is done. The process is repeated till L>0. At 

L=0, only the +L is changed which ultimately leaves out (-1) bin empty. Finally the marked 

image is obtained through the inverse of the sub-sampling with unmodified reference sub-

sampled image and the modified destination sub-sampled images. Now in the resultant the -1 

bin of the histograms will remain empty and this is used to check whether the marked image is 

tampered with or not. The presented method requires transmitting some overhead information 

,i.e., ( Δu, Δv, and L) which is stored by simple LSB. While extracting the  -1 bin is checked 

and if it has more than one occurrence then the extraction process is stopped being the marked 

image is tampered with. Now the marked image is sub-sampled and the inverse of the 

embedding process is applied to extract the secret data as well as the cover image losslessly. 

 

Lee in his paper [13] is specifically focused on the reversible data hiding in medical images. 

The authors point it out that medical images are different from natural images and hence they 

have devised this algorithm with high quality and high capacity as well as 100% reversibility 

as goal. This paper proposes a novel method which uses a difference histogram expansion and 
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error-free scheme for medical images. The method is for multiple rounds of data embedding 

on the histogram so as to increase the data hiding capacity. If say, R round of data embedding 

is performed then the chances of overflowing and underflowing also increases. For eg.: if 7 

rounds of embedding is performed then the pixel whose values are 249 and above in 8 bit 

grayscale, they will become more than 255 and hence will arise a problem. So, the proposed 

method suggests first to resolve this problem of underflow and overflow. To, avoid this 

underflow and overflow possibility an error-free scheme is performed on the original image 

considering the number of iterations of data hiding to be R. R is subtracted from the pixel values 

which are more than (max pixel value-R) and when the pixel value are less than R then R is 

added to those pixel values. This modified information that which pixel values are changed is 

marked on a location map and this location map is embedded into the image using JBIG[14] 

compression. So, with this process, the proposed method has changed original image I into Ie 

(error-free image). Using this Ie an interpolated image is generated and from that the difference 

image is generated from the adjacent pixel values in turn is made. And from this difference 

image we get our difference histogram for data embedding. Then first iteration of embedding 

is done in the way normal histogram modification way of RDH, such as in [11]. Now this 

embedding process is repeated according to the specified number of repetitions R. And from 

using the absolute difference image the marked image is acquired. The data extraction step is 

completely reverse of the embedding step. After the restoration we get the error-free image, 

and from the error-free image we get our original image with 100% reversibility by using the 

value of R and the location map which we sent using JBIG compression. 

 

In the proposed paper[15], the authors have put forward a novel reversible data hiding algorithm 

which is supported on the pillars of histogram modification but the histogram is created using 

the idea of pixel differences instead of a normal histogram. The proposed algorithm exploits the 

strong correlation of neighbouring pixels in an image. That is, in some images it may be the case 

that the histogram produced may be an equal histogram or the maximum point won’t be high 

enough to embed large payload, which would make it unfavourable for data hiding. But by 

exploiting the strong correlation of neighbouring pixels, by using difference in the value of 

neighbouring pixels we will get a histogram which will have high maximum point and a 

favourable histogram for high payload embedding capacity. In the proposed algorithm the image 

is scanned in an inverse S-order, and pixel differences di is calculated using (xi-1- xi), and then 

histogram is prepared using this di, and then the normal histogram modification is done to embed 

data in reversible method. Now another problem with normal histogram modification technique 

is only one pair of maximum and zero point is used, resulting in relatively lower pure payload 
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capacity. The algorithm proposes that multiple hiding passes can be made on the histogram and 

by using multiple pairs of maximum and zero points higher payload can be embedded. But with 

this arises the problem of communicating the multiple pairs of maximum and zero points in order 

to ensure lossless recovery of the original image and the hidden data. The paper proposes the use 

of an auxiliary binary tree to communicate the multiple pairs of maximum and zero points. The 

paper[15] says, that every element in the auxiliary binary tree denotes a peak point. If we assume 

the number of peak points used to embed the secret message is 2L , then L is the level of the 

auxiliary binary tree. Now during the embedding process, another point that is needed to be taken 

care of is underflow and overflow, because modification on a pixel value will not be allowed if 

the pixel value is saturated, so the original pixel value histogram is shifted by 2L. In the 

embedding process first the underflow and overflow situation is countered by shifting the 

original histogram and then a neighbouring pixel value difference histogram is created by 

scanning the image in inverse-S order. After the difference histogram is obtained, it is shifted by 

2L to create empty bins for data embedding. The only overhead information that is required to 

be passed is the level of the auxiliary binary tree for lossless data extraction. The proposed 

algorithm was tested multiple grayscale images and it was observed that while keeping L=0, the 

PSNR value was maintained at 48.3 dB and the bpp value was ranging between 0.1734 to 0.0375 

on the data set. And as the level L was increased the number of bits of pure payload hidden went 

up to 250 kb but PSNR value came down to 26.62, but while maintaining the pure payload at 

around 33kb to 45kb the PSNR was around good 48.3 dB. 
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CHAPTER 3: PROPOSED METHOD 

This section presents a reversible data hiding methodology based on hybrid domain. It takes 

motivation from the reversible data hiding scheme presented in the paper of Kim et. Al. [10] 

and Lee et. Al. [13] but exceeds the former both in terms of embedding size and visual quality. 

After sub sampling, embedding and extraction schemes are explained. The embedding scheme 

involves performing 13-7 Integer Wavelet Transform on all the sub sampled images and the 

sensitive information is hidden in the high frequency bands. The reverse process is applied to 

extract the sensitive information from the cover image.  

3.1) Embedding Scheme 

Step1: Sub –Sampling is the process of dividing an image in a collection of its smaller units. 

Here we have used the sampling method used by Kim and Lee. Let I(x, y) be an image of 

dimension NxM where x=0,1......M-1 and y=0, 1…..N-1. We further define Δu and Δv as the 

two sampling factors along the rows and columns. This process creates sub sampled images S 

with dimension N/ Δu x M/ Δv. The methodology for calculating sub-sampled images are as 

follows: 

𝑆(𝑖, 𝑗) = 𝐼 𝑖. Δ𝑣  + 𝑓𝑙𝑜𝑜𝑟
𝑘 − 1

Δ𝑢
,  𝑗 · Δ𝑢 + (𝑘 − 1)𝑚𝑜𝑑Δ𝑢  

      Here i=0......, M/ Δv −1, j=0, ..., N/ Δu −1, and k=1..., Δu × Δv.    If N/ Δu and M/ Δv turn 

out to be a non-integral value, we modify the size of sub-sampled images by flooring. 

 

Fig. 7 
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Step2: We select one sub-sampled image in which no embedding will occur. This will increase 

the security of the cover image against various attacks. The index of the sub-sampled image S 

is calculated by the following equation. 

 

𝐼𝑛 = 𝑅𝑜𝑢𝑛𝑑 − 1 𝑥Δ𝑣  +  𝑅𝑜𝑢𝑛𝑑 . 

 

Step 3: All the subsampled images except the one with index In undergo one dimensional 13-

7 Integer Wavelet Transform.  The 13-7 Transform decomposed each image into four sub bands 

LL, LH, HL, HH. In our proposed algorithm, embedding occurs in the HH sub band.  

      The one dimensional 13-7 transform is used to transform a one-dimensional signal X 

consisting of 2K elements into an average A and detailed D sub-band. The following equations 

are used 

    𝐷[𝑛] = 𝑋[2𝑛 + 1] + 𝑓𝑙𝑜𝑜𝑟
 

(𝑋[2(𝑛 + 2)] + 𝑋[2(𝑛 − 1)]) − 9(𝑋[2𝑛 + 2] + 𝑥[2𝑛]) +  

𝐴[𝑛] = 𝑋[2𝑛] + 𝑓𝑙𝑜𝑜𝑟
1

32 
(−𝐷[𝑛 + 1] − 𝐷[𝑛 − 2]) + 9(𝐷[𝑛] + 𝐷[𝑛 − 2]) +

1

2
 

 

     Here X[2n] and X[2n+1] represents the even and odd signals respectively where 

n=0,1.......(k-1). To transform a 2D image of size NxM, the set of equations are applied twice, 

first along the rows and then along the columns.  

 

Step4: After embedding, we apply Inverse 13-7 Transform to generate the modified sub-
sampled images.  

            To reconstruct the original signal form Detailed D and Average component A, the 
following equations are used 

 

𝑋[2𝑛] = 𝐴[𝑛] − 𝑓𝑙𝑜𝑜𝑟
1

32 
(−𝐷[𝑛 + 1] − 𝐷[𝑛 − 2]) + 9(𝐷[𝑛] + 𝐷[𝑛 − 2]) +

1

2
 

𝑋[2𝑛 + 1] = 𝐷[2𝑛 + 1] − 𝑓𝑙𝑜𝑜𝑟  
1

16
  (𝑋[2(𝑛 + 2)] + 𝑋[2(𝑛 − 1)]) − 9(𝑋[2𝑛 + 2] + 𝑥[2𝑛]) +

1

2
 

 

Where n=0,1.......(k-1) to reconstruct the original signal X of length 2K.  For implementing this 

on an 2D image, we need to consider LL, LH, HL, HH as four quadrants of an NxM image. 
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Then applying the set on equations on all columns and on rows respectively to regenerate the 

2D image. 

Step5: Finally obtain the marked image, with inverse sub-sampling on the unmodified sub-

sampled image S(In) and the rest of the modified sub-sampled images 

 

This method also requires transmitting some overhead information such as the sampling factors 

and size of the data.   

 

 

 3.2) Extraction Scheme 

Step1: Obtain the values of two sampling factors Δu and Δv and perform sub-sampling on 
the marked image.  

Step 2: Determine the index of the unmodified sub-sample In. 

Step3: Apply 13-7 Integer Wavelet Transform on the modified sub-sampled images to 
generate the LL, LH, HL, HH sub bands. From the HH sub bands extract the sensitive 
information. 

Step4:  Apply 13-7 Inverse Integer wavelet transform to regenerate the sub-sample images. 

Step5: Finally use inverse sampling to regenerate the cover image.  

The image obtained at the end of the extraction scheme has no distortion. 
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Fig. 8 
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CHAPTER 4: EXPERIMENTAL RESULTS AND COMPARISSION 

Our algorithm’s performance was measured in terms of embedding capacity (BPP) and 
distortion (PSNR). The results thus obtained were compared to other pre-existing methods of 
image steganography some of which has been discussed in chapter 2 of this project report. We 
have used three images from USP-SIPI data set and two from pseudo-PHI-DICOM-Data. The 
bit string that is embedded is taken from the publicly available MRI reports which we have 
taken from the website of usarad.com which is written in the annexure iii(page no. 34) of this 
project. To increase the size of input bit string we have copied the stated bit string of 
annexure(iii) in order to increase our bit string size and the BPP value. 
 
4.1) Performance comparison with other algorithms: 

Table 1 summarizes the results based on the comparison between the proposed algorithm of 
this project and other reversible medical image steganography based algorithms. Here we have 
used two medical images of size 256x256 and size 225x225 and have taken a bpp of 0.51 and 
0.64 where we have achieved PSNR of 66.37 dB and 71.42 dB respectively. This shows that 
the proposed algorithm is producing better results than previously discussed algorithms of 
RDH in spatial domain. 

 

(a) (b)  

(c) (d)  
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(e ) (f)  
(a)(b)  (a) aerial           (b) comparison of payload(bpp) vs PSNR aerial data 

            (c)(d)  (c) cameraman (d) comparison of payload(bpp) vs PSNR on cameraman 
 (e)(f)   (e) jetplane       (f) comparison of payload(bpp) vs PSNR on jetplane 

Fig. 9 
The sampling factors for Fig 9. (a) (c) (e), were set to 16 

 
Keeping the value of sampling factor constant at 8, we calculate PSNR, SSIM, MSE for 8 
images from the USP-SIPI dataset 
 
 

Table 1: Result on USP-SIPI Dataset using 1 bit LSB in proposed algorithm 

Image MSE PSNR SSIM 

Jetplane 0.05801 60.946 0.9991 

Aerial 0.05818 60.48 0.9995 

Cameraman 0.05783 60.508 0.9991 

Lake 0.05807 60.490 0.9996 

House 0.05577 60.666 0.9994 

Pirate 0.05736 60.5445 0.9996 

Livingroom 0.05897 60.489 0.9992 

Walkbridge 0.05429 60.5497 0.9993 

 

The cover image and marked images for the above given data is given on the next page: 
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(a) (b)  

(c) (d)  

(e) (f)  
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(g) (h)  

(i) (j)  

Fig. 10: showing the cover images in (a),(c),(e),(g),(i) and their respective marked images in right column 

(a),(b): cover and marked image of Aerial 
(c),(d): cover and marked image of Cameraman 

(e),(f):cover and marked image of house 
(g),(h): cover and marked image of Lake 

(i),(j): cover and marked image of walkbridge 
 
Results on medical images: the first two rows’ cover and marked images are shown in fig. 8 

Now we test our algorithm on some of medical images. We have embedded some MRI reports 

in those images taken from [26]. 
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(a) (b)   

(c) (d)  

(e) (f)          
Fig. 11 (a)marked brain image of 256x256 (b) marked spine image of 225x225 

(c)cover brain image of 256x256 (d) cover spine image of 225x225 
(e )Cover 512x512 cervic spine (f) Marked 512x512 cervic spine 

Table 2: Results on Medical Images embedding MRI reports taken from [26] 

Image Size Bit String 
Size 

BPP MSE PSNR SSIM 

MRI Lumber Spine 225 x 225 33210 0.656 0.004 71.26 0.995 

MRI Brain 256 x 256 41943 0.506 0.007 69.25 0.998 

MRI Cervic SPine 512 x 512 146800 0.559 0.053 60.821 0.917 
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Table 3: Comparison of the proposed method with other RDH algorithms’ performance 
Sl
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cropping, rotation 
,scaling 

5 Chandra 
sekaran 
V. et 
al.[10] 

Integer wavelet 
transform(Haar 
& DIH shifting N

A
 

H
yb

ri
d 

Location map 
& binary tree 
for peak and 
zero point 

MATLAB 
R2010 
images 

62.56,52.85 
,50.92 & 
45.85at 
0.1,0.3,0.6 
& 0.8 bpb 

NA 

6 Ni Z. et 
al.[12] 

Histogram 
shifting 

N
A

 

Sp
at

ia
l 

peak and zero 
points 

512x512 
DOCOM 
images & 
1096 image 
CorelDraw 

48.2 and 
48.3 for 
payload of 
37682 to 
184442 bits 

NA 

7 Kim 
K.S. et 
al.[13] 

Multilevel DIH 
shifting of sub 
sampled images N

A
 

Sp
at

ia
l 

Overflow, 
underflow 
handling 
information 

512x512 
USC SIPI & 
DICOM 
image 

50dB to 
30.27 with 
payload 6Kb 
to 210Kb 

NA 

8 Lee H et al. 
[14] 

Multi round 
DIH shifting N

A
 

Sp
at

ia
l Location map MRI, CT- 

scans, X-ray 
image 

54 NA 

9 Tai 
W.L. et 
al.[15] 

DIH shifting & 
Overflow & 
underflow 
adjustment 

N
A

 

Sp
at

ia
l Binary tree of 

multiple peak 
and zero 
points 

512x512 
grayscale 
image 

Around 48.3 
with payload 
33kb to 
45kb 

NA  

10. Proposed 
algorithm 

Sub-Sampling 
of image & 13-
7 Integer 
wavelet 
transform 

N
A

 

T
ra

n
sf

or
m

 Sub-sampling 
parameters 
and size of the 
load 

256x256 
grayscale 
image 

66.37 dB & 
71.42 dB at 
0.51 bpp & 
0.64 bpp  

NA 
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Conclusion: 
Reversible medical image steganography is an important field of study as can be found in this 

literature.  This work began with a review of various algorithms used for embedding and 

extraction of data. The use of Integer Wavelet Transform leads to a faster computation. The high 

level of performance of the algorithm is evident from the high PSNR, small value of MSE and 

high SSIM. Hence the practicality of the algorithm is well conclusive. Future prospects for this 

algorithm involve using other wavelet transforms, or some spatial technique such as histogram 

shifting etc..  
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Annexure i 

List of Figures: 
Fig. 1: Message embedding and stego image preparation flowchart.  

Fig. 2: Message extraction from stego image flowchart.  

Fig. 3: Reversible Data Hiding flowchart 

Fig. 4: Message embedding in transform domain flowchart 

Fig. 5: Message extraction in transform domain flowchart 

Fig. 6: Spatial Image’s transformation into the four bands of LL,LH,HL,HH. 

Fig. 7: Representation of sub-sampling of image into multiple sub-samples taking Δu= Δv= 4. 

Fig. 8: Proposed Algorithm’s flowchart 

Fig. 9:  (a) ‘Aerial’ marked image 

  (b) comparison of payload(bpp) vs PSNR on data generated by embedding on Aerial Image 

  (c) ‘Cameraman’ marked image 

  (d) comparison of payload(bpp) vs PSNR on data generated by embedding on Cameraman Image 

  (e) ‘Jetplane’ marked image 

  (f) comparison of payload(bpp) vs PSNR on data generated by embedding on jetplane Image 

 Fig. 10: (a),(b): cover and marked image of Aerial 

(c),(d): cover and marked image of Cameraman 

(e),(f):cover and marked image of house 

(g),(h): cover and marked image of Lake 

(i),(j): cover and marked image of walkbridge 

 

Fig. 11: (a) cover brain image of 256x256  

(b) marked brain image of 256x256 

(c) cover spine image of 225x225 

(d) marked spine image of 225x225 

(e)Cover 512x512 cervic spine  

(f) Marked 512x512 cervic spine 
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Annexure ii 

List of Tables: 
Table 1: Result on USP-SIPI Dataset 

Table 2: Results on Medical Images embedding MRI reports taken from [26] 

   Table 3: Comparison of the proposed method with other RDH algorithms’ performance 
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Annexure iii 

MRI report 

(The following MRI report has been taken from [26]) 
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MRI OF THE LUMBAR SPINE WITH AND WITHOUT CONTRAST 

PROCEDURE: 

MRI of lumbosacral spine without/with IV contrast. 

 

INDICATION: 

Radiculopathy post L2-L3 fusion, question incomplete fusion. Persistent symptoms. 

 

COMPARISON: 

None. 

 

TECHNIQUE: 

Multiplanar and multi-sequence imaging of the lumbosacral spine without/with intravenous contrast 
using a 0.3T MRI scanner. 

 

FINDINGS: 

Postoperative findings of posterior intrapedicular spinal fusion at L2-L3 noted. The L2-L3 disk is 
preserved. Enhancing peridural fibrosis noted at L2-L3 level mildly deforming the thecal sac with 
dominant extrinsic impression on the right lateral thecal sac. Non enhancing cystic foci noted along 
the posterior elements representing small pseudomeningoceles. Postoperative fusion and 
laminectomy noted at L4-L5 level with osseous fusion anteriorly. Osseous hypertrophy of the 
posterior elements noted at L4 and L5. Lumbar lordosis is decreased. Multilevel endplate, disk and 
facet degenerative changes noted. Conus medullaris terminates at approximately mid L1 vertebral 
body level. 

 

L1-L2 shows moderate broad-based disc bulging contributing to mild to moderate left greater than 
right neuroforamina narrowing. Spinal canal is grossly patent. Approximately 2 mm L1 on L2 
retrolisthesis noted. 

 

L2-L3 shows moderate nonenhancing bi foraminal broad-based disk bulging contributing to mild-to- 
moderate right greater than left neural foramina narrowing. Moderate acquired spinal canal stenosis 
noted due to enhancing peridural fibrosis with asymmetric more focal extrinsic impression on the 
right lateral ventral thecal sac. Negligible spondylolisthesis of L2 on L3 noted. 

 

L3-L4 level shows mild disk desiccation and height loss. Extraforaminal focal annular tears noted on 
both sides. Spinal canal and foramina are patent. 
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L4-L5 level shows postoperative findings with partial fusion anteriorly with linear hyper intense 
signal in the remaining intervertebral disk space. Spinal canal and foramina are patent. No gross 
thecal sac deformity noted. Bilateral laminectomies noted. 

 

L5-S1 level shows subtle left central broad-based disk protrusion. Spinal canal and foramina are 
patent. No gross thecal sac deformity. Bilateral laminectomies noted. 

Ferromagnetic susceptibility artifact noted along the mid posterior back spanning from L2 through 
S2. 

 

No suspicious prevertebral or posterior paraspinal soft tissue signal abnormality noted. Mild 
subchondral sclerosis of the included sacroiliac joints noted. 

Incidental note of overdistended bladder. 

 

IMPRESSION: 

1. Postoperative findings of posterior spinal intrapedicular fusion at L2-L3 level. L2-L3 shows 
moderate nonenhancing bi foraminal broad-based disk bulging contributing to mild-to-moderate 
right greater than left neural foramina narrowing. Moderate acquired spinal canal stenosis noted 
due to enhancing peridural fibrosis with asymmetric more focal extrinsic impression on the right 
lateral ventral thecal sac. Negligible spondylolisthesis of L2 on L3 noted. Non enhancing cystic foci 
noted along the posterior elements representing small pseudomeningoceles. 

 

2. Postoperative fusion and laminectomy noted at L4-L5 levels with osseous fusion anteriorly. 
Osseous hypertrophy of the posterior elements noted at L4 and L5. 

 

3. L5-S1 level shows subtle left central broad-based disk protrusion. Spinal canal and foramina 
are patent. No gross thecal sac deformity. 

 

Note that the stability of findings cannot be determined in the absence of prior imaging for 
comparison/correlation. 

Correlation with prior imaging is advised to document stability of findings described. 

 

-Electronically Signed by: RADIOLOGIST, ADMIN on 06/07/2010 1:22:01 PM 

 

Bit string: 

00001010 00100000 00001010 01001101 01010010 01001001 00100000 01001111 01000110 
00100000 01010100 01001000 01000101 00100000 01001100 01010101 01001101 01000010 
01000001 01010010 00100000 01010011 01010000 01001001 01001110 01000101 00100000 
01010111 01001001 01010100 01001000 00100000 01000001 01001110 01000100 00100000 
01010111 01001001 01010100 01001000 01001111 01010101 01010100 00100000 01000011 
01001111 01001110 01010100 01010010 01000001 01010011 01010100 00001010 01010000 
01010010 01001111 01000011 01000101 01000100 01010101 01010010 01000101 00111010 
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01101100 01110100 01101001 01110000 01101100 01100001 01101110 01100001 01110010 
00100000 01100001 01101110 01100100 00100000 01101101 01110101 01101100 01110100 
01101001 00101101 01110011 01100101 01110001 01110101 01100101 01101110 01100011 
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01110101 01101101 01100010 01101111 01110011 01100001 01100011 01110010 01100001 
01101100 00100000 01110011 01110000 01101001 01101110 01100101 00100000 01110111 
01101001 01110100 01101000 01101111 01110101 01110100 00101111 01110111 01101001 
01110100 01101000 00100000 01101001 01101110 01110100 01110010 01100001 01110110 
01100101 01101110 01101111 01110101 01110011 00100000 01100011 01101111 01101110 
01110100 01110010 01100001 01110011 01110100 00100000 01110101 01110011 01101001 
01101110 01100111 00100000 01100001 00100000 00110000 00101110 00110011 01010100 
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01000100 01001001 01001110 01000111 01010011 00111010 00001010 01010000 01101111 
01110011 01110100 01101111 01110000 01100101 01110010 01100001 01110100 01101001 
01110110 01100101 00100000 01100110 01101001 01101110 01100100 01101001 01101110 
01100111 01110011 00100000 01101111 01100110 00100000 01110000 01101111 01110011 
01110100 01100101 01110010 01101001 01101111 01110010 00100000 01101001 01101110 
01110100 01110010 01100001 01110000 01100101 01100100 01101001 01100011 01110101 
01101100 01100001 01110010 00100000 01110011 01110000 01101001 01101110 01100001 
01101100 00100000 01100110 01110101 01110011 01101001 01101111 01101110 00100000 
01100001 01110100 00100000 01001100 00110010 00101101 01001100 00110011 00100000 
01101110 01101111 01110100 01100101 01100100 00101110 00100000 01010100 01101000 
01100101 00100000 01001100 00110010 00101101 01001100 00110011 00100000 01100100 
01101001 01110011 01101011 00100000 01101001 01110011 00100000 01110000 01110010 
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01100100 01101111 01101101 01100101 01101110 01101001 01101110 01100111 01101111 
01100011 01100101 01101100 01100101 01110011 00101110 00100000 01010000 01101111 
01110011 01110100 01101111 01110000 01100101 01110010 01100001 01110100 01101001 
01110110 01100101 00100000 01100110 01110101 01110011 01101001 01101111 01101110 
00100000 01100001 01101110 01100100 00100000 01101100 01100001 01101101 01101001 
01101110 01100101 01100011 01110100 01101111 01101101 01111001 00100000 01101110 
01101111 01110100 01100101 01100100 00100000 01100001 01110100 00100000 01001100 
00110100 00101101 01001100 00110101 00100000 01101100 01100101 01110110 01100101 
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00100000 01110100 01101000 01100001 01101110 00100000 01110010 01101001 01100111 
01101000 01110100 00100000 01101110 01100101 01110101 01110010 01101111 01100110 
01101111 01110010 01100001 01101101 01101001 01101110 01100001 00100000 01101110 
01100001 01110010 01110010 01101111 01110111 01101001 01101110 01100111 00101110 
00100000 01010011 01110000 01101001 01101110 01100001 01101100 00100000 01100011 
01100001 01101110 01100001 01101100 00100000 01101001 01110011 00100000 01100111 
01110010 01101111 01110011 01110011 01101100 01111001 00100000 01110000 01100001 
01110100 01100101 01101110 01110100 00101110 00100000 01000001 01110000 01110000 
01110010 01101111 01111000 01101001 01101101 01100001 01110100 01100101 01101100 
01111001 00100000 00110010 00100000 01101101 01101101 00100000 01001100 00110001 
00100000 01101111 01101110 00100000 01001100 00110010 00100000 01110010 01100101 
01110100 01110010 01101111 01101100 01101001 01110011 01110100 01101000 01100101 
01110011 01101001 01110011 00100000 01101110 01101111 01110100 01100101 01100100 
00101110 00001010 00001010 01001100 00110010 00101101 01001100 00110011 00100000 
01110011 01101000 01101111 01110111 01110011 00100000 01101101 01101111 01100100 
01100101 01110010 01100001 01110100 01100101 00100000 01101110 01101111 01101110 
01100101 01101110 01101000 01100001 01101110 01100011 01101001 01101110 01100111 
00100000 01100010 01101001 00100000 01100110 01101111 01110010 01100001 01101101 
01101001 01101110 01100001 01101100 00100000 01100010 01110010 01101111 01100001 
01100100 00101101 01100010 01100001 01110011 01100101 01100100 00100000 01100100 
01101001 01110011 01101011 00100000 01100010 01110101 01101100 01100111 01101001 
01101110 01100111 00100000 01100011 01101111 01101110 01110100 01110010 01101001 
01100010 01110101 01110100 01101001 01101110 01100111 00100000 01110100 01101111 
00100000 01101101 01101001 01101100 01100100 00101101 01110100 01101111 00101101 
00100000 01101101 01101111 01100100 01100101 01110010 01100001 01110100 01100101 
00100000 01110010 01101001 01100111 01101000 01110100 00100000 01100111 01110010 
01100101 01100001 01110100 01100101 01110010 00100000 01110100 01101000 01100001 
01101110 00100000 01101100 01100101 01100110 01110100 00100000 01101110 01100101 
01110101 01110010 01100001 01101100 00100000 01100110 01101111 01110010 01100001 
01101101 01101001 01101110 01100001 00100000 01101110 01100001 01110010 01110010 
01101111 01110111 01101001 01101110 01100111 00101110 00100000 01001101 01101111 
01100100 01100101 01110010 01100001 01110100 01100101 00100000 01100001 01100011 
01110001 01110101 01101001 01110010 01100101 01100100 00100000 01110011 01110000 
01101001 01101110 01100001 01101100 00100000 01100011 01100001 01101110 01100001 
01101100 00100000 01110011 01110100 01100101 01101110 01101111 01110011 01101001 
01110011 00100000 01101110 01101111 01110100 01100101 01100100 00100000 01100100 
01110101 01100101 00100000 01110100 01101111 00100000 01100101 01101110 01101000 
01100001 01101110 01100011 01101001 01101110 01100111 00100000 01110000 01100101 
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01110010 01101001 01100100 01110101 01110010 01100001 01101100 00100000 01100110 
01101001 01100010 01110010 01101111 01110011 01101001 01110011 00100000 01110111 
01101001 01110100 01101000 00100000 01100001 01110011 01111001 01101101 01101101 
01100101 01110100 01110010 01101001 01100011 00100000 01101101 01101111 01110010 
01100101 00100000 01100110 01101111 01100011 01100001 01101100 00100000 01100101 
01111000 01110100 01110010 01101001 01101110 01110011 01101001 01100011 00100000 
01101001 01101101 01110000 01110010 01100101 01110011 01110011 01101001 01101111 
01101110 00100000 01101111 01101110 00100000 01110100 01101000 01100101 00100000 
01110010 01101001 01100111 01101000 01110100 00100000 01101100 01100001 01110100 
01100101 01110010 01100001 01101100 00100000 01110110 01100101 01101110 01110100 
01110010 01100001 01101100 00100000 01110100 01101000 01100101 01100011 01100001 
01101100 00100000 01110011 01100001 01100011 00101110 00100000 01001110 01100101 
01100111 01101100 01101001 01100111 01101001 01100010 01101100 01100101 00100000 
01110011 01110000 01101111 01101110 01100100 01111001 01101100 01101111 01101100 
01101001 01110011 01110100 01101000 01100101 01110011 01101001 01110011 00100000 
01101111 01100110 00100000 01001100 00110010 00100000 01101111 01101110 00100000 
01001100 00110011 00100000 01101110 01101111 01110100 01100101 01100100 00101110 
00001010 00001010 01001100 00110011 00101101 01001100 00110100 00100000 01101100 
01100101 01110110 01100101 01101100 00100000 01110011 01101000 01101111 01110111 
01110011 00100000 01101101 01101001 01101100 01100100 00100000 01100100 01101001 
01110011 01101011 00100000 01100100 01100101 01110011 01101001 01100011 01100011 
01100001 01110100 01101001 01101111 01101110 00100000 01100001 01101110 01100100 
00100000 01101000 01100101 01101001 01100111 01101000 01110100 00100000 01101100 
01101111 01110011 01110011 00101110 00100000 01000101 01111000 01110100 01110010 
01100001 01100110 01101111 01110010 01100001 01101101 01101001 01101110 01100001 
01101100 00100000 01100110 01101111 01100011 01100001 01101100 00100000 01100001 
01101110 01101110 01110101 01101100 01100001 01110010 00100000 01110100 01100101 
01100001 01110010 01110011 00100000 01101110 01101111 01110100 01100101 01100100 
00100000 01101111 01101110 00100000 01100010 01101111 01110100 01101000 00100000 
01110011 01101001 01100100 01100101 01110011 00101110 00100000 01010011 01110000 
01101001 01101110 01100001 01101100 00100000 01100011 01100001 01101110 01100001 
01101100 00100000 01100001 01101110 01100100 00100000 01100110 01101111 01110010 
01100001 01101101 01101001 01101110 01100001 00100000 01100001 01110010 01100101 
00100000 01110000 01100001 01110100 01100101 01101110 01110100 00101110 00001010 
00100000 00001010 00001010 00100000 00001010 00001010 01001100 00110100 00101101 
01001100 00110101 00100000 01101100 01100101 01110110 01100101 01101100 00100000 
01110011 01101000 01101111 01110111 01110011 00100000 01110000 01101111 01110011 
01110100 01101111 01110000 01100101 01110010 01100001 01110100 01101001 01110110 
01100101 00100000 01100110 01101001 01101110 01100100 01101001 01101110 01100111 
01110011 00100000 01110111 01101001 01110100 01101000 00100000 01110000 01100001 
01110010 01110100 01101001 01100001 01101100 00100000 01100110 01110101 01110011 
01101001 01101111 01101110 00100000 01100001 01101110 01110100 01100101 01110010 
01101001 01101111 01110010 01101100 01111001 00100000 01110111 01101001 01110100 
01101000 00100000 01101100 01101001 01101110 01100101 01100001 01110010 00100000 
01101000 01111001 01110000 01100101 01110010 00100000 01101001 01101110 01110100 
01100101 01101110 01110011 01100101 00100000 01110011 01101001 01100111 01101110 
01100001 01101100 00100000 01101001 01101110 00100000 01110100 01101000 01100101 
00100000 01110010 01100101 01101101 01100001 01101001 01101110 01101001 01101110 
01100111 00100000 01101001 01101110 01110100 01100101 01110010 01110110 01100101 
01110010 01110100 01100101 01100010 01110010 01100001 01101100 00100000 01100100 
01101001 01110011 01101011 00100000 01110011 01110000 01100001 01100011 01100101 
00101110 00100000 01010011 01110000 01101001 01101110 01100001 01101100 00100000 
01100011 01100001 01101110 01100001 01101100 00100000 01100001 01101110 01100100 
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00100000 01100110 01101111 01110010 01100001 01101101 01101001 01101110 01100001 
00100000 01100001 01110010 01100101 00100000 01110000 01100001 01110100 01100101 
01101110 01110100 00101110 00100000 01001110 01101111 00100000 01100111 01110010 
01101111 01110011 01110011 00100000 01110100 01101000 01100101 01100011 01100001 
01101100 00100000 01110011 01100001 01100011 00100000 01100100 01100101 01100110 
01101111 01110010 01101101 01101001 01110100 01111001 00100000 01101110 01101111 
01110100 01100101 01100100 00101110 00100000 01000010 01101001 01101100 01100001 
01110100 01100101 01110010 01100001 01101100 00100000 01101100 01100001 01101101 
01101001 01101110 01100101 01100011 01110100 01101111 01101101 01101001 01100101 
01110011 00100000 01101110 01101111 01110100 01100101 01100100 00101110 00001010 
00001010 01001100 00110101 00101101 01010011 00110001 00100000 01101100 01100101 
01110110 01100101 01101100 00100000 01110011 01101000 01101111 01110111 01110011 
00100000 01110011 01110101 01100010 01110100 01101100 01100101 00100000 01101100 
01100101 01100110 01110100 00100000 01100011 01100101 01101110 01110100 01110010 
01100001 01101100 00100000 01100010 01110010 01101111 01100001 01100100 00101101 
01100010 01100001 01110011 01100101 01100100 00100000 01100100 01101001 01110011 
01101011 00100000 01110000 01110010 01101111 01110100 01110010 01110101 01110011 
01101001 01101111 01101110 00101110 00100000 01010011 01110000 01101001 01101110 
01100001 01101100 00100000 01100011 01100001 01101110 01100001 01101100 00100000 
01100001 01101110 01100100 00100000 01100110 01101111 01110010 01100001 01101101 
01101001 01101110 01100001 00100000 01100001 01110010 01100101 00100000 01110000 
01100001 01110100 01100101 01101110 01110100 00101110 00100000 01001110 01101111 
00100000 01100111 01110010 01101111 01110011 01110011 00100000 01110100 01101000 
01100101 01100011 01100001 01101100 00100000 01110011 01100001 01100011 00100000 
01100100 01100101 01100110 01101111 01110010 01101101 01101001 01110100 01111001 
00101110 00100000 01000010 01101001 01101100 01100001 01110100 01100101 01110010 
01100001 01101100 00100000 01101100 01100001 01101101 01101001 01101110 01100101 
01100011 01110100 01101111 01101101 01101001 01100101 01110011 00100000 01101110 
01101111 01110100 01100101 01100100 00101110 00001010 01000110 01100101 01110010 
01110010 01101111 01101101 01100001 01100111 01101110 01100101 01110100 01101001 
01100011 00100000 01110011 01110101 01110011 01100011 01100101 01110000 01110100 
01101001 01100010 01101001 01101100 01101001 01110100 01111001 00100000 01100001 
01110010 01110100 01101001 01100110 01100001 01100011 01110100 00100000 01101110 
01101111 01110100 01100101 01100100 00100000 01100001 01101100 01101111 01101110 
01100111 00100000 01110100 01101000 01100101 00100000 01101101 01101001 01100100 
00100000 01110000 01101111 01110011 01110100 01100101 01110010 01101001 01101111 
01110010 00100000 01100010 01100001 01100011 01101011 00100000 01110011 01110000 
01100001 01101110 01101110 01101001 01101110 01100111 00100000 01100110 01110010 
01101111 01101101 00100000 01001100 00110010 00100000 01110100 01101000 01110010 
01101111 01110101 01100111 01101000 00100000 01010011 00110010 00101110 00001010 
00001010 01001110 01101111 00100000 01110011 01110101 01110011 01110000 01101001 
01100011 01101001 01101111 01110101 01110011 00100000 01110000 01110010 01100101 
01110110 01100101 01110010 01110100 01100101 01100010 01110010 01100001 01101100 
00100000 01101111 01110010 00100000 01110000 01101111 01110011 01110100 01100101 
01110010 01101001 01101111 01110010 00100000 01110000 01100001 01110010 01100001 
01110011 01110000 01101001 01101110 01100001 01101100 00100000 01110011 01101111 
01100110 01110100 00100000 01110100 01101001 01110011 01110011 01110101 01100101 
00100000 01110011 01101001 01100111 01101110 01100001 01101100 00100000 01100001 
01100010 01101110 01101111 01110010 01101101 01100001 01101100 01101001 01110100 
01111001 00100000 01101110 01101111 01110100 01100101 01100100 00101110 00100000 
01001101 01101001 01101100 01100100 00100000 01110011 01110101 01100010 01100011 
01101000 01101111 01101110 01100100 01110010 01100001 01101100 00100000 01110011 
01100011 01101100 01100101 01110010 01101111 01110011 01101001 01110011 00100000 
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01101111 01100110 00100000 01110100 01101000 01100101 00100000 01101001 01101110 
01100011 01101100 01110101 01100100 01100101 01100100 00100000 01110011 01100001 
01100011 01110010 01101111 01101001 01101100 01101001 01100001 01100011 00100000 
01101010 01101111 01101001 01101110 01110100 01110011 00100000 01101110 01101111 
01110100 01100101 01100100 00101110 00001010 01001001 01101110 01100011 01101001 
01100100 01100101 01101110 01110100 01100001 01101100 00100000 01101110 01101111 
01110100 01100101 00100000 01101111 01100110 00100000 01101111 01110110 01100101 
01110010 01100100 01101001 01110011 01110100 01100101 01101110 01100100 01100101 
01100100 00100000 01100010 01101100 01100001 01100100 01100100 01100101 01110010 
00101110 00001010 00001010 01001001 01001101 01010000 01010010 01000101 01010011 
01010011 01001001 01001111 01001110 00111010 00001010 00110001 00101110 00001001 
01010000 01101111 01110011 01110100 01101111 01110000 01100101 01110010 01100001 
01110100 01101001 01110110 01100101 00100000 01100110 01101001 01101110 01100100 
01101001 01101110 01100111 01110011 00100000 01101111 01100110 00100000 01110000 
01101111 01110011 01110100 01100101 01110010 01101001 01101111 01110010 00100000 
01110011 01110000 01101001 01101110 01100001 01101100 00100000 01101001 01101110 
01110100 01110010 01100001 01110000 01100101 01100100 01101001 01100011 01110101 
01101100 01100001 01110010 00100000 01100110 01110101 01110011 01101001 01101111 
01101110 00100000 01100001 01110100 00100000 01001100 00110010 00101101 01001100 
00110011 00100000 01101100 01100101 01110110 01100101 01101100 00101110 00100000 
01001100 00110010 00101101 01001100 00110011 00100000 01110011 01101000 01101111 
01110111 01110011 00100000 01101101 01101111 01100100 01100101 01110010 01100001 
01110100 01100101 00100000 01101110 01101111 01101110 01100101 01101110 01101000 
01100001 01101110 01100011 01101001 01101110 01100111 00100000 01100010 01101001 
00100000 01100110 01101111 01110010 01100001 01101101 01101001 01101110 01100001 
01101100 00100000 01100010 01110010 01101111 01100001 01100100 00101101 01100010 
01100001 01110011 01100101 01100100 00100000 01100100 01101001 01110011 01101011 
00100000 01100010 01110101 01101100 01100111 01101001 01101110 01100111 00100000 
01100011 01101111 01101110 01110100 01110010 01101001 01100010 01110101 01110100 
01101001 01101110 01100111 00100000 01110100 01101111 00100000 01101101 01101001 
01101100 01100100 00101101 01110100 01101111 00101101 01101101 01101111 01100100 
01100101 01110010 01100001 01110100 01100101 00100000 01110010 01101001 01100111 
01101000 01110100 00100000 01100111 01110010 01100101 01100001 01110100 01100101 
01110010 00100000 01110100 01101000 01100001 01101110 00100000 01101100 01100101 
01100110 01110100 00100000 01101110 01100101 01110101 01110010 01100001 01101100 
00100000 01100110 01101111 01110010 01100001 01101101 01101001 01101110 01100001 
00100000 01101110 01100001 01110010 01110010 01101111 01110111 01101001 01101110 
01100111 00101110 00100000 01001101 01101111 01100100 01100101 01110010 01100001 
01110100 01100101 00100000 01100001 01100011 01110001 01110101 01101001 01110010 
01100101 01100100 00100000 01110011 01110000 01101001 01101110 01100001 01101100 
00100000 01100011 01100001 01101110 01100001 01101100 00100000 01110011 01110100 
01100101 01101110 01101111 01110011 01101001 01110011 00100000 01101110 01101111 
01110100 01100101 01100100 00100000 01100100 01110101 01100101 00100000 01110100 
01101111 00100000 01100101 01101110 01101000 01100001 01101110 01100011 01101001 
01101110 01100111 00100000 01110000 01100101 01110010 01101001 01100100 01110101 
01110010 01100001 01101100 00100000 01100110 01101001 01100010 01110010 01101111 
01110011 01101001 01110011 00100000 01110111 01101001 01110100 01101000 00100000 
01100001 01110011 01111001 01101101 01101101 01100101 01110100 01110010 01101001 
01100011 00100000 01101101 01101111 01110010 01100101 00100000 01100110 01101111 
01100011 01100001 01101100 00100000 01100101 01111000 01110100 01110010 01101001 
01101110 01110011 01101001 01100011 00100000 01101001 01101101 01110000 01110010 
01100101 01110011 01110011 01101001 01101111 01101110 00100000 01101111 01101110 
00100000 01110100 01101000 01100101 00100000 01110010 01101001 01100111 01101000 
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01110100 00100000 01101100 01100001 01110100 01100101 01110010 01100001 01101100 
00100000 01110110 01100101 01101110 01110100 01110010 01100001 01101100 00100000 
01110100 01101000 01100101 01100011 01100001 01101100 00100000 01110011 01100001 
01100011 00101110 00100000 01001110 01100101 01100111 01101100 01101001 01100111 
01101001 01100010 01101100 01100101 00100000 01110011 01110000 01101111 01101110 
01100100 01111001 01101100 01101111 01101100 01101001 01110011 01110100 01101000 
01100101 01110011 01101001 01110011 00100000 01101111 01100110 00100000 01001100 
00110010 00100000 01101111 01101110 00100000 01001100 00110011 00100000 01101110 
01101111 01110100 01100101 01100100 00101110 00100000 01001110 01101111 01101110 
00100000 01100101 01101110 01101000 01100001 01101110 01100011 01101001 01101110 
01100111 00100000 01100011 01111001 01110011 01110100 01101001 01100011 00100000 
01100110 01101111 01100011 01101001 00100000 01101110 01101111 01110100 01100101 
01100100 00100000 01100001 01101100 01101111 01101110 01100111 00100000 01110100 
01101000 01100101 00100000 01110000 01101111 01110011 01110100 01100101 01110010 
01101001 01101111 01110010 00100000 01100101 01101100 01100101 01101101 01100101 
01101110 01110100 01110011 00100000 01110010 01100101 01110000 01110010 01100101 
01110011 01100101 01101110 01110100 01101001 01101110 01100111 00100000 01110011 
01101101 01100001 01101100 01101100 00100000 01110000 01110011 01100101 01110101 
01100100 01101111 01101101 01100101 01101110 01101001 01101110 01100111 01101111 
01100011 01100101 01101100 01100101 01110011 00101110 00001010 00001010 00110010 
00101110 00001001 01010000 01101111 01110011 01110100 01101111 01110000 01100101 
01110010 01100001 01110100 01101001 01110110 01100101 00100000 01100110 01110101 
01110011 01101001 01101111 01101110 00100000 01100001 01101110 01100100 00100000 
01101100 01100001 01101101 01101001 01101110 01100101 01100011 01110100 01101111 
01101101 01111001 00100000 01101110 01101111 01110100 01100101 01100100 00100000 
01100001 01110100 00100000 01001100 00110100 00101101 01001100 00110101 00100000 
01101100 01100101 01110110 01100101 01101100 01110011 00100000 01110111 01101001 
01110100 01101000 00100000 01101111 01110011 01110011 01100101 01101111 01110101 
01110011 00100000 01100110 01110101 01110011 01101001 01101111 01101110 00100000 
01100001 01101110 01110100 01100101 01110010 01101001 01101111 01110010 01101100 
01111001 00101110 00100000 01001111 01110011 01110011 01100101 01101111 01110101 
01110011 00100000 01101000 01111001 01110000 01100101 01110010 01110100 01110010 
01101111 01110000 01101000 01111001 00100000 01101111 01100110 00100000 01110100 
01101000 01100101 00100000 01110000 01101111 01110011 01110100 01100101 01110010 
01101001 01101111 01110010 00100000 01100101 01101100 01100101 01101101 01100101 
01101110 01110100 01110011 00100000 01101110 01101111 01110100 01100101 01100100 
00100000 01100001 01110100 00100000 01001100 00110100 00100000 01100001 01101110 
01100100 00100000 01001100 00110101 00101110 00001010 00001010 00110011 00101110 
00001001 01001100 00110101 00101101 01010011 00110001 00100000 01101100 01100101 
01110110 01100101 01101100 00100000 01110011 01101000 01101111 01110111 01110011 
00100000 01110011 01110101 01100010 01110100 01101100 01100101 00100000 01101100 
01100101 01100110 01110100 00100000 01100011 01100101 01101110 01110100 01110010 
01100001 01101100 00100000 01100010 01110010 01101111 01100001 01100100 00101101 
01100010 01100001 01110011 01100101 01100100 00100000 01100100 01101001 01110011 
01101011 00100000 01110000 01110010 01101111 01110100 01110010 01110101 01110011 
01101001 01101111 01101110 00101110 00100000 01010011 01110000 01101001 01101110 
01100001 01101100 00100000 01100011 01100001 01101110 01100001 01101100 00100000 
01100001 01101110 01100100 00100000 01100110 01101111 01110010 01100001 01101101 
01101001 01101110 01100001 00100000 01100001 01110010 01100101 00100000 01110000 
01100001 01110100 01100101 01101110 01110100 00101110 00100000 01001110 01101111 
00100000 01100111 01110010 01101111 01110011 01110011 00100000 01110100 01101000 
01100101 01100011 01100001 01101100 00100000 01110011 01100001 01100011 00100000 
01100100 01100101 01100110 01101111 01110010 01101101 01101001 01110100 01111001 
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00101110 00001010 00001010 01001110 01101111 01110100 01100101 00100000 01110100 
01101000 01100001 01110100 00100000 01110100 01101000 01100101 00100000 01110011 
01110100 01100001 01100010 01101001 01101100 01101001 01110100 01111001 00100000 
01101111 01100110 00100000 01100110 01101001 01101110 01100100 01101001 01101110 
01100111 01110011 00100000 01100011 01100001 01101110 01101110 01101111 01110100 
00100000 01100010 01100101 00100000 01100100 01100101 01110100 01100101 01110010 
01101101 01101001 01101110 01100101 01100100 00100000 01101001 01101110 00100000 
01110100 01101000 01100101 00100000 01100001 01100010 01110011 01100101 01101110 
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Abstract 

 The easiest way for two persons to communicate is through speech. The voice of 

each person differs from other, as voice of a person contains some unique 

features. These features can differentiate the voice of two people.  Using feature 

extraction techniques to extract unique features then combining with various 

models is the way one can identify speakers through machine learning. Many 

researchers have proposed their way of thinking through implementing different 

techniques which includes the combination of feature extraction techniques and 

classification models. 

We proposed a novel approach which can be used to uniquely identify a speaker 

through their voice sample. So, our speaker recognition system uses Deep Neural 

Networks as classifiers and MFCC, LFCC, LPC, Rasta-PLP as feature extraction 

techniques. The used dataset is a custom dataset consisting of 10 different 

speakers, speaking Bengali or English mixed with Bengali language and recorded 

in a natural environment. Our proposed method achieved 98% accuracy, which is 

better from previous works. 
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Introduction 

Speech is the major part of human communication. It is a one dimensional 

function of time. Speech contains many different levels of information such that 

gender, age , emotion , identification of speaker etc. Like fingerprints , iris and 

face, every person’s voice also contains some unique features. So speech can also 

be used to identify/recognise a person as a biometric identifier.  

We can extract different features like MFCC, LFCC, LPCC ,RPLP ,PNCC from a given 

speech signal. These features contain unique sequences which can be used to 

identify speakers.  

In recent times Deep Neural Networks along with ANN, RNN, SVM and CNN 

performed very accurately in Speaker Identification. Combining Deep Neural 

Networks along with the various feature extraction algorithms we can build more 

accurate and efficient models which can identify speakers in real time. 

 

 

Related Works 

In recent years a lot of works have been done in Speaker Identification using 

different techniques and methods.  

 

i. Speaker Identification Using a Hybrid CNN-MFCC Approach (1): The 

architecture used here is CNN combined with MFCC. It identifies speakers without 

converting it into text and in a noisy environment. It uses DNN for classification 

and gets an accuracy of 87.5% on a self-made dataset of 60 speakers. CNN is very 

helpful as it can do both feature extraction and classification. Speaker 

acknowledgement is done using a neural network here. The used dataset is purely 

homemade and contains background noises. The reason to use this kind of 

dataset is to observe real life occurring voices. The voices are taken from 

classmates and YouTube speaking in Urdu. 20 seconds is the time length of each 

of these. At first a comparison between 2 approaches is done then combined into 

a better hybrid approach. First the CNN based approach is used and then the 

approach that uses MFCC as feature extractor and DNN as classifier. Individually, 

promising accuracy was not found in the results for an unknown speaker. So, in a 
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hybrid approach the feature of both the models is combined and then DNN is 

used on that single feature file. According to the results, the CNN approach 

yielded 75% accuracy and 77.5% precision, the MFCC-DNN approach yielded 80% 

accuracy and 85% precision, the hybrid approach yielded 87.5% accuracy and 91% 

precision. 

ii. Speaker Identification by GMM based i Vector (2): A Gaussian mixture model 

is being used which is built by extracting some acoustic feature vectors from the 

voice. Compression on the basis of an i-vector yields better predicted results. An 

order pair of speakers is created where the unknown speaker resides in the first 

co-ordinate and the test speaker resides in the second coordinate. Voices which 

are independent of text and language are identified by vocal tract. From the 

existing speaker model, an unknown speaker is identified using a vocal track as it 

is identified first for identifying the unknown speaker. It gives score prediction by 

following the postulates of Bhattacharyya. The GMM creation is done by 

quantizing the analog signals and then sampling the quantized results for doing 

pre emphasis on the previous sampled results and then windowing is done and on 

the result FFT is applied and then some band pass filters are applied for getting an 

average value and after that MFCC is used for feature extraction from it to get the 

final GMM result. A probabilistic compression process is applied by using linearity 

of GMM and generative equations. Simulating the results is being done in two 

stages. The first stage is thresholding and the next stage is cosine based score 

predicting. For a particular value of threshold, false accepts can be detected and 

for the highest predicted score this model yields better results. 

 

iii. A review on Deep Learning approaches in Speaker Identification (3): Deep 

learning approaches are more successful in speech recognition and identifying the 

speaker, than the traditional approaches. The paper aims to promote deep 

learning implementation techniques for identifying the speaker. It categorized 

various applications and implementations of Deep Learning (DL) according to the 

process of identifying a speaker. Deep Neural Network (DNN) is a layer-greedy 

training technique to train multiple neural networks (NN) of hidden layers, at 

least three. The method of training DNN is known as Deep Learning (DL). SID 

(Speaker Identification) is a Natural Language Processing (NLP) technique. Major 
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implementations of Deep Learning are CNN, also known as Convolutional Neural 

Network, DBN, also known as Deep Belief Networks and SAE, also known as 

Stacked Auto Encoders. Speaker Identification can be distinguished as two 

categories. In the first category, identification is done based on the speaker's 

voice print which is further categorized as a closed set in which the speaker is 

verified with some existing voice prints and an open set in which a new speaker is 

verified. In the second category, identification is done based on the level of user 

control which is further categorized as text dependent and text independent. The 

two phases of the Speaker Identification process are, training phase and matching 

phase. At the training phase, the speaker's voice prints are taken for feature 

extraction and then a model is trained based on those features. At the matching 

phase, test speaker’s voice prints are taken and the features are extracted and 

then it is matched with the extracted features of the trained model. GMM 

(Gaussian Mixture Model) were useful for text independent matching and HMM 

(Hidden Markov Model) were used for text dependent. There are three categories 

in which speakers can be identified using DNN. In the first category, DNN is used 

as a feature extractor and then GMM can be used for matching. In the second 

category, DNN is used as a classifier for matching and MFCC can be used for 

feature extraction. In the third category, DNN is used for the entire feature 

extraction and matching in the Speaker Identification process. Here PCA (Principal 

Component Analysis) is often used for dimensionality reduction. Stacked 

Bottleneck Features (SBN) is also used for dimensionality reduction. The 

Bottleneck layer has significantly lower dimensionality as two cascading Neural 

Networks are used. i-vector based approaches also give food results in the field of 

Speaker Identification. DL can be used to extract i-vectors as well as a classifier 

after extracting the i-vectors. Unsupervised Deep Belief Networks (UDBN) are 

suitable for unknown Speaker Identification which uses i-vectors. 

 

iv. Comparative Study of Different Techniques in Speaker Recognition: Review 

(4): Speakers are always recognised by the individual information which is already 

present in their speech signals. Speech gives information about the emotion and 

identity of the speaker. Every human voice has unique vocal characteristics like 

pitch, frequency, and tone, which has to be extracted and then enrolled by 
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training the voice model and then acknowledged or confirmed. Feature extraction 

is the technique in which distinctive elements are distinguished from the 

information set. It is done after the pre-processing. A basic speech recognition 

system has the input speech signal which is pre-processed and then features are 

extracted for classification and after that, a decision for speaker recognition is 

taken. MFCC is the most popular feature extraction technique. It is the classical 

approach for analyzing speech signals. MFCC has a high rate of performance and 

low complexity. LPC system is used to decide fundamental speech parameters. 

Previous speech tests are blended and approximated. LPC technique is reliable 

and accurate for providing parameters for representing vocal tract. LPC has good 

computational speed and encodes speech at low bitrate. DTW algorithm is used 

to determine similarities between two time series. It depends on element 

programming. Lt is a coordinate acknowledgement strategy. Delta and double 

delta of MFCC features can also be used as extracting techniques. For 

classification GMM, ANN and SVM can be used. GMM is useful when less memory 

and dataset are used. ANN is useful when extracting features and modeling is 

combined into a single network. SVM is effective in binary classification. 

 

v. Speaker Verification using Convolutional Neural Networks (5): The developed 

architecture for speaker verification is a CNN based architecture which captures 

and discards the information of the speakers and non-speakers simultaneously. 

Background model is created by training to differentiate between speakers. 

Previous approaches averaged the results from the background model. The 

problem is overturned here by using the Siamese framework for fine tuning the 

trained model. Discriminative feature space is generated for differentiating the 

same and different speakers. This method outperforms the previously formed 

traditional methods for verification. Three phases are involved in the general 

procedure for speaker verification namely: i) Development ii) Enrolment iii) 

Evaluation. In this work, Siamese Neural Network is used to operate. Public 

VoxCeleb dataset is used for the experiments. Here, 140000 utterances are there 

for 1211 speakers and for testing there are 6000 utterances for 40 speakers. The 

audios have different ethnicities, accents and also have background chatter, 

channel noise, overlapping speech and different recording qualities. In the input 
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pipeline, the SpeechPy library is used for feature extraction. VGG-M architecture 

is being used and the size is being reduced for training it faster. In time 

dimension, performing pooling degraded the performance. The Siamese 

architecture is used while verifying which consists of two identical CNNs. The 

general idea behind this is if there are two pairs which belong to the same identity 

then the common feature subspace distance would be close. TensorFLow is used 

and the model is trained on the NVIDIA Pascal GPU. GMM-UBM and I-vectors 

models have been used for comparison. EER is the Equal Error Rate which is the 

least for this architecture as compared to other models. The EER result is 10.5. 

 

vi. Text-independent speaker recognition using LSTM-RNN and speech 

enhancement (6): In the given paper speaker is recognised in a text independent 

manner in presence of noise and reverberation. For feature extraction, MFCC, 

spectrum and log spectrum are used. For classification, LSTM-RNN (Long-Short 

Term Memory Recurrent Neural Network) is used. When MFCC is used, 

recognition rate is 95.33%, when spectrum or log spectrum is used, recognition 

rate is 98.7%. Spectral subtraction and wavelet de noising, speech enhancement 

techniques are used for improving the performance of recognition. The DNN is 

less effective than LSTM-RNN in the acousting model. RNNs are cyclic. MFCC 

techniques are sensitive to external noises. Here spectrum and log spectrum are 

used as extracting features and then compared to MFCC with and without noise. 

Short Time Fourier Transform (STFT) is applied on the signal for computing the 

spectrogram. A RNN is a feed forward network and it faces vanishing gradient 

problem. It consists of one input layer, one output layer and 1-2 hidden layers. 

The system decides the output based on the previous and on the present inputs. 

Noise reduction is the key point of speech enhancement which can be achieved 

by techniques like spectral subtraction and wavelet de noising. The proposed 

system recognises speakers from any given spoken phrases. At first the speech 

signals are pre-processed and used as input for LSTM-RNN. Then some features 

are extracted for training the LSTM-RNN. The data used here is a subset of 

Chinese Mandarin Corpus Dataset. This dataset was recorded using cell phones. A 

total of 100 utterances from 5 female speakers were taken, from which 70 were 

used for training and 30 for testing. 3 seconds reverberation time was used. 
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Accuracy was best when spectral subtraction was at 30 dB. When the utterances 

are undistorted, LSTM-RNN had an accuracy of 98.7% and when distorted, using 

spectrum features, 90% accuracy was achieved and when reverberation was 

added, using spectrum features 62.7% accuracy was achieved. 

 

vii. Support Vector Machines Using GMM Supervectors for Speaker Verification 

(7): In speaker recognition, GMMs are extremely successful. GMM Mean Super 

vectors are formed by stacking the means from the output of the GMM model. 

The GMM super vector in a SVM classifier is used here. Two new SVM kernels are 

proposed which are based on the GMM models’ distance metrics. Speaker 

recognition is a two-class problem, so is SVM, which is a two-class classifier. Two 

natural methods are shown for calculating the distance between GMM super 

vectors. The ideal outputs for SVM are either 1 or -1 and it depends upon the 

support vector whether it lies in class 0 or 1. The training of the GMM UBM is 

performed by MAP adaptation. The first proposed kernel is the GMM Super 

vector Linear Kernel. Here, only a single inner product has to be computed 

between GMM and target model for obtaining a score. The second proposed 

kernel is GMM L2 Inner Product Kernel. Here, the assumption is that mixture 

components are far from each other. It uses inner products of function space. 

Experiments are performed on the 2005 NIST Speaker Recognition (SRE) corpus. 

EER (Equal Error Rate) and minDCF (minimum Decision Cost Value) are used as 

metrics for evaluation. RASTA filtering is used for processing Cepstral vectors. 8 

GMM super vectors from eight conversations were produced for target speaker 

enrolment. Model compaction was applied for the Linear Kernel for obtaining a 

smaller representation. The determinant was discarded due to ill conditioning in 

the L2 Inner Product Kernel. Standard GMM configuration is outperformed by the 

Linear GMM Super vector kernel. 

 

viii. An extreme learning machine approach for speaker recognition (8): Extreme 

Learning Machine (ELM) is used in this paper for verification of text independent 

speakers and is compared to the SVM classifier. ELM are extremely fast learners. 

ELSDSR corpus database is used and MFCC was extracted as input for ELM and 

SVM. Variants of ELM are, i) Optimization based ELM, ii) Regularized ELM, iii) 
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Kernelized ELM. They can run faster than SVM, Optimization based ELM is very 

much similar to SVM but it does the work with fewer optimization constraints. For 

making the resultant solution stabler, a positive value of 1/λ is added while 

calculating the output weights in the Regularized ELM. Kernelized ELM comes into 

play when the feature mapping of the hidden layer is unknown. The user doesn’t 

need to know the feature space and its dimensionality. From the database ELSDSR 

(English Language Speech Database for Speaker Recognition) corpus voice 

messages were collected from 22 speakers of age varying from 24 to 63. The 

training set had 154 utterances and the testing set had 44 utterances. Training 

data had a duration of 83s each and testing data had a duration of 17.6s each. 

After MFCC, the speech signals from the 20 speakers were converted to 28 

dimensional samples. The evaluation of SVM and ELM classifiers and its variants 

had two stages. First stage builds three classifiers, SVM, Optimised based ELM and 

Regularized ELM. Second stage compares the performance of the classifiers with 

the ROC curve. Both Optimized ELM and Regularized ELM are found to spend less 

time than SVM for training. Optimized ELM are much better in classes 7 to 10 and 

Regularized ELM are better for all classes 1 to 10. Kernelized ELM classifiers spend 

least training time for all classes. So, it can be concluded that ELM classifiers and 

its variants have better performance than SVM classifiers. 

 

ix. A Voice Identification System Using Hidden Markov Model (9): In this 

experiment MFCC technique has been used over the voice signals to extract 

features and a set of feature vectors was created. To train the and classify the 

features The Vector Quantization techniques were used. 

A Hidden Markov Model is a statistical Markov Model in which the system being 

modeled is assumed to be a Markov process with unobserved states.  

The system was mainly divided into two modules- a) Voice recognition b) Speech 

Recognition. 

Modeling: The modeling was done over the features extracted from the mfcc and 

vq methods. For each HMM state there may be a set of output symbols which can 

be described as output probabilities, and a  finite number of states. A set of 

probabilities known as transition probabilities controls the relation between one 

process and the transitions among the states 
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 An observation is produced by the other process representing the current state, 

for each instance of time while assuming the process to be in some state . 

Result: For the result an one dimensional power spectrum was plotted which 

indicates power of a signal at each frequency that it contains. With this model 

Speech Recognition has been accomplished with a success rate of 90% 

 

 

Paper Name Writers Method 
Used 

Dataset Result 

Speaker 
Identification 
Using a Hybrid 
CNN-MFCC 
Approach  

i) Aweem Ashar, ii) 
Muhammud Shahid 
Bhatti, iii) Usama 
Mushtaq 

CNN-
MFCC 

Custom Dataset CNN: Accuracy-
73% Precision-
77.5% 
MFCC-DNN: 
Accuracy-80% 
Precision-85% 
CNN-MFCC: 
Accuracy-87.5% 
Precision-91% 

Text-independent 
speaker 
recognition using 
LSTM-RNN 
and speech 
enhancement 

i) Samia Abd El-
Moneim, 
ii) M. A. Nassar, 
iii)Moawad I. Dessouky , 
iv) Nabil A. Ismail, 
v) Adel S. El-Fishawy,  
vi) Fathi E. Abd El-
Samie  

LSTM-
RNN 

Chinese 
Mandarin 
Corpus Dataset 

i) using MFCC: 
Accuracy -95.33% 
ii) using Log 
Spectrum: 
Accuracy-98.7% 
iii) using spectrum: 
Accuracy-98.7% 

An extreme 
learning machine 
approach for 
speaker 
recognition 

i) Yuan Lan  
ii) Zongjiang Hu 
 iii) Yeng Chai Soh 
iv) Guang-Bin Huang  

SVM-
ELM 

English 
Language 
Speech Dataset 
for Speaker 
Recognition 

i) using 100 
positive sample 
and 900 negative 
sample: Accuracy-
79% 
ii) using 100 
positive sample 
and 90 negative 
samples: 
Accuracy:84% 

Speaker 
Verification using 
Convolutional 
Neural Networks  

Hossein Salehghaffari CNN VoXCeleb i) GMM-UBM: 
EER(equal error 
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ii) I-Vectors :EER-
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iii) I-vectors PLDA: 
EER:11.5 
iv) CNN-2048: 
EER-11.3 
v) CNN-256 + Pair 
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10.5 

Support Vector 
Machines Using 
GMM 
Supervectors for 
Speaker 
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GMM  2005 NIST 
Speaker 
Recognition 
Corpus  

i) GMM-UBM:EER-
5.68% 
ii) GMM-Atnorm: 
EER-4.03% 
iii) GMM Super 
L^2: EER-4.31% 
iv) GMM Super 
Linear:EER-3.77% 

Speaker 
Identification by 
GMM based i-
Vector 

Soumen Kanrar GMM 
based i 
Vector 

Custom Dataset 
 

A review on Deep 
Learning 
approaches in 
Speaker 
Identification  

i) Sreenivas Sremath 
Tirumala 
ii) Seyed Reza 
Shahamiri2  

DNN 
  

Comparative 
Study of Different 
Techniques in 
Speaker 
Recognition: 
Review  

i) Sonali T. Saste 
ii)  Prof.S.M.Jagdale  

   

A Voice 
Identification 
System using 
Hidden 
Markov Model  

i) T. K. Das 
ii) Khalid M. O. Nahar 

Hidden 
Markov 
Model 

Custom Dataset Accuracy: 90% 

 

Table 1: Summary Of Related Works 

 

Dataset: 

For this project we created our own dataset. We took voices from 10 different 

people, aged in between 18 to 50. For each person there are 750 audio samples 

with duration of 4 seconds each. All the samples are in Bengali or Bengali-English 
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mixed language. There are 5 male speakers and 5 female speakers, which makes 

the gender ratio 1:1 in this dataset. All the voice samples are collected in natural 

environmental conditions using different types of recording devices. Some of the 

audios are recorded using dual channel and some are recorded using mono 

channel. Thus we can say the dataset is a close representation of human voice 

audio we hear in our daily life.  

 

Feature Extraction: 

In this project we worked with four types of features, these are Mel-frequency 

cepstral coefficients(MFCCs), Linear prediction coefficients(LPCs), Linear 

Frequency Cepstral Coefficients(LFCCs), Rasta Perceptual Linear Prediction 

coefficients(RPLP).   

 

i. MFCC: The MFCC feature extraction technique basically includes windowing the 

signal, applying the DFT, taking the log of the magnitude, and then warping the 

frequencies on a Mel scale, followed by applying the inverse DCT. Mel Frequency 

Cepstral represents short-term power spectrum of a sound . In this paper we 

extracted 20 mfccs for each audio clip using Librosa library. 

 
Fig 1: MFCC Spectrogram  

ii. LPC: LPC imitates the human vocal tract and gives robust speech feature. It 

evaluates the speech signal by approximating the formants, getting rid of its 

effects from the speech signal and estimate the concentration and frequency of 

the left behind residue. Linear Prediction Coefficients calculate power spectrum 
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of a given audio signal. In this paper we extracted 13 lpcs for each audio clip using 

Spafe library. 

 

 
Fig 2: LPC Spectrogram  

 

iii. LFCC: The computation of LFCC features can be described; firstly, Fast Fourier 

Transform (FFT) is applied to windowed signal for converting each frame of N 

samples from the time domain into the frequency domain. After the FFT block, 

the power coefficients are filtered by linear frequency filter banks. Finally, the log 

Mel spectrum is converted into time using Discrete Cosine Transform (DCT). 

Linear Frequency Cepstral Coefficients are very identical to MFCCs, except it 

covers all frequency ranges equally and gives them equal importance.  In this 

paper we extracted 13 lfccs for each audio clip using Spafe library. 
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Fig 3: LFCC Spectrogram 

 

iv. RASTA PLP: A special band-pass filter was added to each frequency subband in 

traditional PLP algorithm in order to smooth out short-term noise variations and 

to remove any constant offset in the speech channel. Rasta PLP analysis is done 

using Single Value Decomposition. In this paper we extracted 13 Rasta PLP 

coefficients for each audio clip using the Spafe library. 

 

Fig 4: RASTA-PLP Spectrogram 
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Proposed Model 

 

First we created four fully connected Deep Neural Network Models. Then we 

combined these models for ensemble learning, where the mode of the 

predictions from all four models will be counted as the final prediction. Thus it 

increases the correct prediction probability.   

 

Model 1: It has two 2D Convolutional Layers with 128 perceptrons each which are 

followed by another two 2D Convolutional Layers with 64 perceptrons each. Then 

It has two fully connected dense layers with 64 perceptrons and 32 perceptrons 

respectively and an output layer with 10 possible outcomes .  

We used the MFCCs as inputs for this model. After 50 epochs this model gives 

training accuracy of 98.95% with loss 0.0301 and validation accuracy of 98.93% 

with validation loss 0.0413. 

 

 
Fig 5: MODEL 1 Accuracy Plot 
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Fig 6: MODEL 1 Loss Plot 

 

Model 2: It has one 2D Convolutional Layer with 128 perceptrons  which is 

followed by another  two 2D Convolutional Layers with 64 perceptrons and 

another 2D Convolutional Layer with 32 perceptrons. Then It has a fully 

connected dense layer with 32 neurons and an output layer . 

 We used the LFCCs as inputs for this model. After 100 epochs this model gives 

training accuracy of 97.56% with loss 0.0742 and validation accuracy of 97.03% 

with validation loss 0.1336. 

 

 
Fig 7: MODEL 2 Accuracy Plot 
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Fig 8: MODEL 2 Loss Plot 

 

Model 3: It has a 2D Convolutional Layer with 128 perceptrons  followed by two  

2D Convolutional Layers with 64 perceptrons and 32 perceptrons respectively. 

Then It has two fully connected dense layers with 64 and 32 perceptrons, and an 

output layer with 10 possible outcomes .  

We used the LPCs as inputs for this model. After 50 epochs this model gives 

training accuracy of 97.59% with loss 0.0629 and validation accuracy of 95.63% 

with validation loss 0.1469. 

 

 
Fig 9: MODEL 3 Accuracy Plot 
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Fig 10: MODEL 3 Loss Plot 

 

Model 4: It has a 2D Convolutional Layer with 128 perceptrons each which is 

followed by another two  2D Convolutional Layers with 64 perceptrons each. Then 

It has two fully connected dense layers with 64  and 32 perceptrons respectively. 

Then it has an output layer. 

We used the Rasta-PLPs as inputs for this model. After 50 epochs this model gives 

training accuracy of 96.91% with loss 0.0911 and validation accuracy of 97.76% 

with validation loss 0.0744. 

 

 
Fig 11: MODEL 4 Accuracy Plot 
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Fig 12: MODEL 4 Loss Plot 

 

Appling Ensemble Technique:  In ensemble technique we combine results of 

different machine learning models to provide a final output. In this project, we 

will combine the outputs of above mentioned models to predict a final output. 

For a given audio sample we will extract all the four above mentioned features 

and feed those features to their respective model for predictions. Then we 

consider the mode of the predictions as the final prediction for given audio data.  

We created a end to end process for Speaker Identification where we will provide 

a voice sample as input, and then the program will extract MFCC, LPC, LFCC and 

RASTA PLP from that audio and send those features to their respected Machine 

Learning Model for prediction. At last we will combine those output to make the 

final prediction.  
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Fig 13: Diagram of Ensemble Learning Algorithm 

 

 

Result 

 

Feature  Epochs  Training 
Accuracy 

Validati
on 

Accura
cy 

MFCC 50  98.95% 98.93% 

LFCC 100 97.56% 97.03% 

LPC 50 97.59% 95.63% 

RPLP 50 96.91% 97.76% 

Table 2: Result of Different Models 

 

The accuracy will increase further after implementing the Ensemble Learning, as 

the probability of getting wrong predictions will be reduced in this process. 
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Conclusion 

 

The model we proposed consists of Deep Neural Networks , which take MFCC, 

LFCC, LPC and Rasta-PLP spectrograms as input and achieve validation accuracy of 

98.93%, 97.03%, 95.63% and 97.76% respectively.  Further using ensemble 

learning techniques we can combine the outputs of these models and identify the 

speaker more accurately. Currently we worked with a dataset of 10 unique 

speakers; in future we can expand the dataset to create a more general and 

accurate speaker identification system which can identify speakers in real time.  
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